Уравнение состояния
Thermodynamics navigation image.svg
Статья является частью серии «Термодинамика».
Уравнение состояния идеального газа
Уравнение Ван-дер-Ваальса
Уравнение Бертло
Уравнение Дитеричи
Уравнение Битти — Бриджмена
Уравнение состояния Редлиха — Квонга
Уравнение состояния Пенга — Робинсона
Уравнение состояния Барнера — Адлера
Уравнение состояния Суги — Лю
Уравнение состояния Бенедикта — Вебба — Рубина
Уравнение состояния Ли — Эрбара — Эдмистера
Уравнение состояния Ми — Грюнайзена
Разделы термодинамики
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др. Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы. Эти уравнения не содержатся в постулатах термодинамики, так что для каждого выбранного для изучения макроскопического объекта их либо определяют эмпирически, либо для модели изучаемой системы находят методами статистической физики. В рамках термодинамики уравнения состояния считают заданными при определении системы. Если изучаемый объект допускает термодинамическое описание, то это описание выполняют посредством уравнений состояния, которые для реальных веществ могут быть крайне сложными.

О терминологии

Из множества уравнений состояния выделим:

  • уравнения состояния, выражающие интенсивные переменные состояния, входящие в фундаментальное уравнение Гиббса в энергетическом выражении и фундаментальное уравнение Гиббса энтропийном выражении, в виде функций от экстенсивных переменных состояния — аргументов соответствующего фундаментального уравнения Гиббса (см. примечание );
  • термические уравнения состояния, выражающие связь между температурой, обобщёнными термодинамическими координатами (к которым в данном случае причислены количества составляющих систему веществ) и обобщёнными термодинамическими силами (к которым в данном случае причислены химические потенциалы составляющих систему веществ). Обычно под уравнениями состояния, если специально не оговаривается, подразумевают термические уравнения состояния. Величины, входящие термическое уравнение состояния, именуют первичными термическими величинам;
  • калорические уравнения состояния, отражающие связь между первичными калорическими величинами и первичными термическими величинами. В качестве первичных калорических величин обычно выступают термодинамические потенциалы (чаще всего внутренняя энергия и энтальпия) и энтропия как родоначальница ряда функций Массье — Планка;
  • канонические уравнения состояния (фундаментальные уравнения Гиббса для термодинамических потенциалов), представляющие собой выражения для термодинамических потенциалов как функций их естественных независимых переменных.
Простейшая термодеформационная система — газ в цилиндре с поршнем. Всё, что за пределами окрашенного жёлтым пространства, — внешняя среда

В русскоязычной учебной литературе получила распространение более узкая трактовка понятий «термические уравнения состояния» и «калорическое уравнение состояния», позволяющая за счёт потери общности заметно упростить изложение рассматриваемого вопроса. А именно, в узком смысле под термическим уравнением состояния понимают зависимость обобщённой силы или химического потенциала от температуры , обобщённых координат и масс составляющих веществ :

(выражение есть сокращение для перечисления переменных определённого типа, в данном случае — обобщённых координат). В узком смысле под калорическим уравнением состояния понимают зависимость от температуры и других первичных термических величин внутренней энергии :

или энтальпии .

Общее число уравнений состояния (все термические плюс калорическое) термодинамической системы при таком подходе равно числу термодинамических степеней свободы системы, то есть числу независимых переменных, характеризующих состояние системы, а их полный набор необходим и достаточен для исчерпывающего описания термодинамических свойств системы.

Далее — если иное не оговорено особо — для большей наглядности речь будет идти об однородных закрытых термодеформационных системах в статическом (локальноравновесном) состоянии. Вариантность такой системы равна двум (см. Правило Дюгема) и для её полного описания — помимо калорического уравнения состояния — требуется единственное термическое уравнение состояния. Простейшим примером такой системы служит газ в цилиндре с поршнем.

Термическое уравнение состояния

Термическое уравнение состояния (ТУС, авторство термина принадлежит Х. Камерлинг-Оннесу) для закрытой термодеформационной системы связывает между собой её давление, объём и температуру; его общий вид можно записать так:

(Термическое уравнение состояния, заданное как неявная функция)

Таким образом, чтобы задать термическое уравнение состояния необходимо конкретизировать вид функции .

Для идеального газа (как классического, так и квазиклассического) его термическое уравнение состояния известно как уравнение Клапейрона (уравнение Клапейрона — Менделеева):

где  — универсальная газовая постоянная,  — масса газа,  — его молярная масса.

Для фотонного газа его давление зависит только от температуры, а термическое уравнение состояния выглядит так:

(Термическое уравнение состояния фотонного газа)

где a — радиационная постоянная.

Для макроскопических объектов, требующих от термодинамики учёта их магнитных и электрических свойств, термические уравнения состояния имеют следующий вид:

(Термическое уравнение состояния магнетика)
(Термическое уравнение состояния электрически поляризуемой среды)

где  — намагниченность вещества,  — напряжённость магнитного поля,  — поляризованность вещества,  — напряжённость электрического поля.

Для упругого стержня (из изотропного материала) длиной L, на который действует сила F, направленная вдоль стержня, термическое уравнение состояния выглядит так:

(Термическое уравнение состояния упругого стержня)

Термические коэффициенты

Выражая одну из переменных в термическом уравнении состояния через две другие, для простой закрытой системы в зависимости от выбора независимых переменных термическое уравнение состояния можно записать тремя способами:

(Термическое уравнение состояния с независимыми переменными T и V)
(Термическое уравнение состояния с независимыми переменными T и P)
(Термическое уравнение состояния с независимыми переменными V и P)

Запишем эти уравнения в дифференциальной форме:

(Дифференциальное ТУС с независимыми переменными T и V)
(Дифференциальное ТУС с независимыми переменными T и P)
(Дифференциальное ТУС с независимыми переменными P и V)

В приведённые уравнения входят шесть частных производных, которые попарно обратны друг другу:

поэтому самостоятельное значение имеют только три из них. В качестве основных обычно выбирают производные

и

которые называют термическими коэффициентами. Название отражает связь этих коэффициентов с термическим уравнением состояния.

Из математического анализа известно, что для любой неявно заданной функции трёх переменных

справедливо соотношение

(Термическое уравнение состояния в дифференциальной форме)

или

то есть любой из трёх термических коэффициентов можно выразить через два других. Это соотношение иногда называют термическим уравнением состояния в дифференциальной форме.

На практике используют не сами частные производные, а образованные из них коэффициенты(также называемые термическими коэффициентами, либо же термодинамическими коэффициентами):

изобарный коэффициент термического расширения

(Изобарный коэффициент объёмного расширения; коэффициент термического расширения; температурный коэффициент всестороннего расширения; термический коэффициент всестороннего расширения)

характеризующий скорость изменения объёма при изменении температуры в условиях постоянного давления (для идеального газа );

термический коэффициент давления при постоянном объёме


(Изохорный коэффициент давления; температурный коэффициент давления; термический коэффициент давления; коэффициент термической упругости)

характеризующий скорость изменения давления при изменении температуры в условиях постоянного объёма (для идеального газа );

изотермический коэффициент всестороннего сжатия


(Изотермический коэффициент всестороннего сжатия; коэффициент изотермического сжатия; коэффициент объёмного сжатия; коэффициент сжимаемости; коэффициент объёмной упругости; коэффициент объёмного упругого расширения)

характеризующий скорость изменения объёма при изменении давления в условиях постоянной температуры (для идеального газа ). Знак минус указывает на уменьшение объёма с повышением давления и нужен для того, чтобы избежать отрицательных значений коэффициента сжимаемости.

Из термического уравнения состояния в дифференциальной форме вытекает уравнение связи между коэффициентами объёмного расширения, упругости и сжатия:


(Уравнение связи между коэффициентами объёмного расширения, упругости и сжатия)

Это соотношение позволяет, например, найти коэффициент для твёрдых и жидких тел (которые практически невозможно нагреть или охладить без изменения их объёма) по определяемым опытным путём коэффициентам и .

Термические коэффициенты являются функциями объёма, давления и температуры. Практическое значение коэффициентов объёмного расширения, упругости и сжатия состоит в том, что они используются для вычисления тех термодинамических величин, которые затруднительно или невозможно определить экспериментально.

Калорическое уравнение состояния

Если в термическое уравнение состояния в качестве обязательной переменной (зависимой или независимой) входит температура, то калорическое уравнение состояния (КУС) для простой закрытой системы отражает зависимость внутренней энергии от термодинамических параметров состояния (температуры и объёма, температуры и давления, объёма и давления) (авторство термина КУС принадлежит Х. Камерлинг-Оннесу):


(Калорическое уравнение состояния с независимыми переменными T и V)


(Калорическое уравнение состояния с независимыми переменными T и P)


(Калорическое уравнение состояния с независимыми переменными V и P)

Калорические коэффициенты

Калорические коэффициенты вводят способом, аналогичным способу введения термических коэффициентов. Запишем калорическое уравнение состояния с независимыми переменными и в дифференциальной форме:


(Дифференциальное КУС с независимыми переменными и )

и посредством входящих в это соотношение частных производных введём первую пару калорических коэффициентов — теплоёмкость при постоянном объёме


(Теплоёмкость при постоянном объёме)

и теплоту изотермического расширения


(Теплота изотермического расширения)

имеющую размерность давления. Применявшееся ранее для этого калорического коэффициента название скрытая теплота расширения как пережиток теории теплорода к использованию не рекомендуется.

Для идеального газа теплоёмкость при постоянном объёме равна: для одноатомных, для двухатомных и для многоатомных газов. Здесь  — масса газа,  — молярная масса этого газа,  — универсальная газовая постоянная. Теплота изотермического расширения идеального газа .

Частная производная


(Внутреннее давление)

носит название внутреннего давления и к калорическим коэффициентам не относится, хотя и вводится одновременно с ними. Численное значение этой величины (отражающей на молекулярном уровне взаимное притяжение частиц), мало для реальных газов и очень велико (по сравнению с обычными значениями внешнего давления) для жидкостей и твёрдых тел. Для идеального газа то есть внутренняя энергия идеального газа не зависит от объёма (закон Джоуля).

Введём вторую пару калорических коэффициентов, связанных с калорическим уравнением состояния с независимыми переменными и  — теплоёмкость при постоянном давлении


(Теплоёмкость при постоянном давлении, выраженная через внутреннюю энергию)

и теплоту изотермического возрастания давления


(Теплота изотермического возрастания давления, выраженная через внутреннюю энергию)

В литературе эти калорические коэффициенты чаще приводят в более компактном и удобном для расчётов виде, используя энтальпию или энтропию :


(Теплоёмкость при постоянном давлении, выраженная через энтальпию)


(Теплота изотермического возрастания давления; теплота изотермического сжатия)

Для идеального газа и связаны формулой Майера. Коэффициент в подавляющем большинстве случаев есть величина отрицательная; для идеального газа . Применявшееся ранее для этого калорического коэффициента название скрытая теплота изменения давления к использованию не рекомендуется.

Приведём определения для последней пары калорических коэффициентов, связанных с калорическим уравнением состояния с независимыми переменными и  — теплоты изохорного сжатия


(Теплота изохорного сжатия)

и теплоты изобарного расширения


(Теплота изобарного расширения)

Четыре из шести введённых калорических коэффициентов ( и ), имея самостоятельный физический смысл, являются полезными вспомогательными величинами при выводе термодинамических соотношений и в термодинамических расчётах, в частности, при вычислении внутренней энергии, энтальпии и энтропии. Коэффициенты и в настоящее время вышли из употребления.

Связь между термическими и калорическими коэффициентами

Полезные соотношения, связывающие термические и калорические коэффициенты:


(Уравнение связи между термическим и калорическим уравнениями состояния)




Для идеального газа


(Формула Майера)

Каноническое уравнение состояния

Основная статья: Термодинамические потенциалы.

Каноническое уравнение представляет собой выражение для одного из термодинамических потенциалов (внутренней энергии, энтальпии, свободной энергии или потенциала Гиббса) через независимые переменные, относительно которых записывается его полный дифференциал.

  • (для внутренней энергии),
  • (для энтальпии),
  • (для энергии Гельмгольца),
  • (для потенциала Гиббса).

Каноническое уравнение, независимо от того, в каком из этих четырёх видов оно представлено, содержит полную информацию о термических и калорических свойствах термодинамической системы (предполагается, что известно и определение термодинамического потенциала, такое, как F = U − TS).

Примеры

  • Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона)
  • Уравнение Ван-дер-Ваальса (уравнение состояния реального газа)
  • Уравнение Дитеричи
  • Уравнение состояния Редлиха — Квонга
  • Уравнение состояния Барнера — Адлера
  • Уравнение состояния Суги — Лю
  • Уравнение состояния Бенедикта — Вебба — Рубина
  • Уравнение состояния Ли — Эрбара — Эдмистера
  • Уравнение состояния Ми — Грюнайзена

Литература

  • Münster A. Classical Thermodynamics. — London e. a.: Wiley-Interscience, 1970. — xiv + 387 p. — ISBN 0 471 62430 6.
  • Александров А. А. Термодинамические основы циклов теплоэнергетических установок. — М.: Издательский дом МЭИ, 2016. — 159 с. — ISBN 978-5-383-00961-1.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. — 2-е изд., испр. — М.: Едиториал УРСС, 2003. — 120 с. — ISBN 5-354-00391-1.
  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.— Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
  • Барилович B. A., Смирнов Ю. А. Основы технической термодинамики и теории тепло- и массообмена. — М.: ИНФРА-М, 2014. — 432 с. — (Высшее образование: Бакалавриат). — ISBN 978-5-16-005771-2.
  • Бахшиева Л. Т. и др. Техническая термодинамика и теплотехника / Под ред. проф А. А. Захаровой. — 2-е изд., испр. — М.: Академия, 2008. — 272 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-4999-1.
  • Белов Г. В. Термодинамика. Часть 1. — 2-е изд., испр. и доп. — М.: Юрайт, 2017. — 265 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-02731-0.
  • Белоконь Н. И. Основные принципы термодинамики. — М.: Недра, 1968. — 112 с.
  • Бурдаков В. П., Дзюбенко Б. В., Меснянкин С. Ю., Михайлова Т. В. Термодинамика. Часть 1. Основной курс. — М.: Дрофа, 2009. — 480 с. — (Высшее образование. Современный учебник). — ISBN 978-5-358-06031-9.
  • Бурдаков В. П., Дзюбенко Б. В., Меснянкин С. Ю., Михайлова Т. В. Термодинамика. Часть 2. Специальный курс. — М.: Дрофа, 2009. — 362 с. — (Высшее образование. Современный учебник). — ISBN 978-5-358-06140-8.
  • Бурсиан В. Р., Соколов П. Т. Лекции по термодинамике. — Л.: Кубуч, 1934. — 352 с.
  • Василевский А. С. Термодинамика и статистическая физика. — 2-е изд., перераб.. — М.: Дрофа, 2006. — 240 с. — ISBN 5-7107-9408-2.
  • Герасимов Я. И., Древинг В. П., Еремин Е. Н. и др. Курс физической химии / Под общ. ред. Я. И. Герасимова. — 2-е изд. — М.: Химия, 1970. — Т. I. — 592 с.
  • Глазов В. М. Основы физической химии. — М.: Высшая школа, 1981. — 456 с.
  • Гуйго Э. И., Данилова Г. Н., Филаткин В. Н. и др. Техническая термодинамика / Под общ. ред. проф. Э. И. Гуйго. — Л.: Изд-во Ленингр. ун-та, 1984. — 296 с.
  • Гуггенгейм. Современная термодинамика, изложенная по методу У. Гиббса / Пер. под ред. проф. С. А. Щукарева. — Л.—М.: Госхимиздат, 1941. — 188 с.
  • Карапетьянц М. Х. Химическая термодинамика. — М.: Химия, 1975. — 584 с.
  • Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. — 2-е изд., сущ. перераб. и доп. — М.: Едиториал УРСС, 2002. — 240 с. — ISBN 5-354-00077-7.
  • Коган В. Е., Литвинова Т. Е., Чиркст Д. Э., Шахпаронова Т. С. Физическая химия / Науч. ред. проф. Д. Э. Чиркст. — СПб.: Национальный минерально-сырьевой ун-т «Горный», 2013. — 450 с.
  • Колесников И. М. Термодинамика физико-химических процессов. — М.: Гос. акад. нефти и газа им. И. М. Губкина, 1994. — 288 с.
  • Колесников И. М. Термодинамика физико-химических процессов. — М.: Нефть и Газ, 2005. — 480 с. — ISBN 5-7246-0351-9.
  • Коновалов В. И. Техническая термодинамика. — Иваново: Иван. гос. энерг. ун-т, 2005. — 620 с. — ISBN 5-89482-360-9.
  • Кубо Р. Термодинамика. — М.: Мир, 1970. — 304 с.
  • Маляренко В. А., Редько А. Ф., Чайка Ю. И., Поволочко В. Б. Техническая теплофизика ограждающих конструкций зданий и сооружений. — Харьков: Рубикон, 2001. — 280 с. — ISBN 966-7152-47-2.
  • Мурзаков В. В. Основы технической термодинамики. — М.: Энергия, 1973. — 304 с.
  • Мюнстер А. Химическая термодинамика / Пер. с нем. под. ред. чл.-корр. АН СССР Я. И. Герасимова. — М.: Мир, 1971. — 296 с.
  • Николаев Г. П., Лойко А. Э. Техническая термодинамика. — Екатеринбург: УрФУ, 2013. — 227 с.
  • Полторак О. М. Термодинамика в физической химии. — М.: Высшая школа, 1991. — 320 с. — ISBN 5-06-002041-X.
  • Путилов К. А. Термодинамика / Отв. ред. М. Х. Карапетьянц. — М.: Наука, 1971. — 376 с.
  • Пыхачев Г. Б., Исаев Р. Г. Подземная гидравлика. — М.: Недра, 1973. — 360 с.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. — 5-е изд., испр. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
  • Сычёв В. В. Сложные термодинамические системы. — 5-е изд., перераб. и доп. — М.: Издательский дом МЭИ, 2009. — 296 с. — ISBN 978-5-383-00418-0.
  • Щелкачев В. Н., Лапук Б. Б. Подземная гидравлика / Под общ. ред. акад. Л. С. Лейбензона. — М. — Л: Гостоптехиздат, 1949. — 524 с.
  • Эпштейн П.С. Курс термодинамики / Пер.с англ. Н. М.Лозинской, Н. А.Толстого.. — ОГИЗ. — М., 1948. — 420 с.

Эта статья использует материал из статьи Wikipedia Уравнение состояния, которая выпущена под Creative Commons Attribution-Share-Alike License 3.0.