変形の記述
変形は連続体が初期状態から最終状態に移動した時に、形状が変化していることを意味する。形状の変化が生じていない場合は、剛体変位が生じたと言う。連続体の変形の記述において、変形前の状態を基準配置、変形後の状態を現在配置と呼ぶ。ここで配置とは、物体の全ての物質点の位置から構成される集合である。
現在配置での物質点の位置x が基準配置での物質点の位置X の関数であるとみなし、これを微分した

は変形勾配テンソルと呼ばれる。
アフィン変形
アフィン変換によって記述できる変形をアフィン変形と呼ぶ。この変換は 線形変換 (回転、せん断、引張、圧縮など)と剛体変換(平行移動)によって構成される。
アフィン変形は以下のように記述される。

ここで、t は時間に該当するパラメーター、c は平行移動である。行列形式は以下の通りである。

F = F (X , t ) や c = c (X , t ) の場合、上記の変形は非アフィン変形となる。
剛体運動
剛体運動は、せん断、引張、圧縮を伴わない、特殊なアフィン変形である。剛体運動は以下のように記述される。

ここでQ は直交行列であり、以下の式が成り立つ。1 は単位行列である。

行列形式は以下の通りである。

変形の例
平面変形
平面変形、または 平面ひずみ は、基準配置において単一平面に限定された変形の一つである。変形が単位ベクトル e1 、e2 によって描写される平面に限定される場合、変形勾配は以下の式で記述される。

行列形式は以下の通りである。

変形勾配は極分解により、引き延ばしを表す部分 U と回転を表す部分 R に分解することができる。全ての変形が平面内であるため、以下のように記述できる。

ここで、θは回転角度、λ1 、λ2 はストレッチである。
等積平面変形
変形が等積的(体積保存)の場合、 det F = 1 となり、以下の式を得る。

または、

単純せん断
単純せん断変形において、e1 が基準方向に固定されている場合、 λ1 = 1 、F e1 = e1 となる。したがって、

変形が等積的であるため、

ここで
と定義すると、単純せん断における変形勾配は、以下のように記述することができる。

または、

であるため、変形勾配を以下のように記述することもできる。

出典
- ^ a b Truesdell, C. and Noll, W., (2004), The non-linear field theories of mechanics: Third edition, Springer, p. 48.
- ^ H.-C. Wu, Continuum Mechanics and Plasticity, CRC Press (2005), ISBN 1-58488-363-4
- ^ a b Ogden, R. W., 1984, Non-linear Elastic Deformations, Dover.