Nota disambigua.svg Disambiguazione – Se stai cercando altri significati, vedi Archimede (disambigua).
Archimede in un dipinto di Domenico Fetti (1620)

Archimede di Siracusa (in greco antico: Ἀρχιμήδης, Archimédēs; Siracusa, 287 a.C. circa – Siracusa, 212 a.C.) è stato un matematico, fisico e inventore greco antico, siceliota.

Considerato come uno dei più grandi scienziati e matematici della storia, i contributi di Archimede spaziano dalla geometria all'idrostatica, dall'ottica alla meccanica. Fu in grado di calcolare la superficie e il volume della sfera e intuì le leggi che regolano il galleggiamento dei corpi. In campo ingegneristico, Archimede scoprì e sfruttò i principi di funzionamento delle leve e il suo stesso nome è associato a numerose macchine e dispositivi, come la vite di Archimede, a dimostrazione della sua capacità inventiva. Circondate ancora da un alone di mistero sono invece le macchine da guerra che Archimede avrebbe preparato per difendere Siracusa dall'assedio romano.

La vita di Archimede è ricordata attraverso numerosi aneddoti, talvolta di origine incerta, che hanno contribuito a costruire la figura dello scienziato nella mente collettiva. Ad esempio, è rimasta celebre nei secoli l'esclamazione hèureka! (εὕρηκα! - ho trovato!) a lui attribuita dopo la scoperta del principio che porta il suo nome.

Biografia

Elementi storici

Statua di Archimede al Treptower Park di Berlino

Si hanno pochi dati certi sulla sua vita. Tutte le fonti concordano sul fatto che egli fosse siracusano e che sia stato ucciso durante il sacco romano di Siracusa del 212 a.C. Vi è inoltre la notizia, tramandata da Diodoro Siculo, che abbia soggiornato in Egitto e che proprio ad Alessandria d'Egitto abbia stretto amicizia con il matematico e astronomo Conone di Samo. Molto probabilmente non fu davvero così: lo scienziato avrebbe voluto entrare in contatto con gli eruditi dell'epoca appartenenti dalla scuola di Alessandria, ai quali inviò molti suoi scritti. Durante questo ipotetico soggiorno, Archimede avrebbe inventato la "vite idraulica".

L'unica cosa certa è che egli fu veramente in contatto con Conone (come si evince dal rimpianto per la sua morte espresso in alcune opere) che però potrebbe aver conosciuto in Sicilia. Tenne corrispondenza con vari scienziati di Alessandria, tra cui Eratostene, al quale dedicò il trattato Il metodo e Dositeo. Un esempio valido pervenutoci sulla collaborazione tra lo scienziato e gli alessandrini è la lettera di premessa al trattato Sulle spirali.

Secondo Plutarco era imparentato col monarca Gerone II. La tesi è controversa ma trova riscontro nella stretta amicizia e stima che, anche secondo altri autori, li legava. La data di nascita non è certa. Viene di solito accettata quella del 287 a.C., sulla base dell'informazione, riferita dall'erudito bizantino Giovanni Tzetzes, che fosse morto all'età di settantacinque anni. Non si sa però se Tzetzes si basasse su fonti attendibili ora perdute o avesse solo tentato di quantificare il dato, riportato da vari autori, che Archimede fosse vecchio al momento dell'uccisione. L'ipotesi che fosse figlio di un astronomo siracusano di nome Fidia (altrimenti sconosciuto) è basata sulla ricostruzione di una frase di Archimede effettuata dal filologo Friedrich Blass, contenuta nell'Arenario, che nei manoscritti era giunta corrotta e priva di senso. Se questa ipotesi è corretta, si può pensare che abbia ereditato dal padre l'amore per le scienze esatte.

Archimede intento a studiare la geometria in un particolare de La scuola di Atene di Raffaello; ha le sembianze di Donato Bramante

Dalle opere conservate e dalle testimonianze si sa che si occupò di tutte le branche delle scienze a lui contemporanee (aritmetica, geometria piana e solida, meccanica, ottica, idrostatica, astronomia ecc.) e di varie applicazioni tecnologiche.

Polibio, Tito Livio e Plutarco riferiscono che durante la seconda guerra punica, su richiesta di Gerone II, si dedicò (a detta di Plutarco con minore entusiasmo ma secondo tutti e tre con grandi successi) alla realizzazione di macchine belliche che aiutassero la sua città a difendersi dall'attacco di Roma. Plutarco racconta che, contro le legioni e la potente flotta di Roma, Siracusa disponeva di poche migliaia di uomini e del genio di un vecchio; le macchine di Archimede avrebbero scagliato massi ciclopici e una tempesta di ferro contro le sessanta imponenti quinquereme di Marco Claudio Marcello. Fu ucciso nel 212 a.C., durante il sacco di Siracusa. Secondo la tradizione l'uccisore sarebbe stato un soldato romano che, non avendolo riconosciuto, non avrebbe eseguito l'ordine di catturarlo vivo.

Archimede godeva di grande stima sia nel suo paese, infatti era un riferimento per re Gerone, sia ad Alessandria d'Egitto, dove intratteneva una corrispondenza con i più illustri matematici del suo tempo, sia tra i Romani, tant'è che secondo la leggenda era stato ordinato di catturarlo vivo (invece fu ucciso). Il comandante romano fece costruire una tomba in suo onore.

La figura di Archimede affascinò i suoi contemporanei al punto che nel tempo le vicende biografiche si sono fittamente intrecciate alle leggende ed è tuttora difficile distinguere gli elementi di finzione dalla realtà storica. Alla mancanza di testimonianze si aggiunge anche il fatto che Archimede scrisse solo opere di carattere teorico e speculativo.

Due celebri aneddoti

La soluzione di Archimede al problema della corona d'oro
(EL)

«Εὕρηκα!»

(IT)

«Eureka!»

(Archimede)

Nell'immaginario collettivo Archimede è indissolubilmente legato a due aneddoti. Vitruvio racconta che avrebbe iniziato ad occuparsi di idrostatica perché il sovrano Gerone II gli aveva chiesto di determinare se una corona fosse stata realizzata in oro puro oppure utilizzando (all'interno della corona) altri metalli. Egli avrebbe scoperto come risolvere il problema mentre faceva un bagno, notando che immergendosi nell'acqua si verificava l'innalzamento del suo livello. L'osservazione l'avrebbe reso così felice che sarebbe uscito nudo di casa e avrebbe corso per le strade di Siracusa esclamando "εὕρηκα" (hèureka!, ho trovato!). Se non fossimo stati a conoscenza del trattato Sui corpi galleggianti, non avremmo potuto dedurre il livello dell'idrostatica archimedea dal racconto vitruviano.

Vitruvio riferisce che il problema sarebbe stato risolto misurando i volumi della corona e di un uguale peso d'oro immergendoli in un recipiente colmo d'acqua e misurando l'acqua traboccata. Si tratta però di un procedimento poco plausibile, sia perché comporta un errore troppo grande, sia perché non ha alcuna relazione con l'idrostatica sviluppata da Archimede. Secondo una ricostruzione più attendibile, attestata nella tarda antichità, Archimede aveva suggerito di pesare la corona e un quantitativo di oro uguale in peso immersi entrambi in acqua. Se la corona fosse stata d'oro puro la bilancia sarebbe stata in equilibrio. Poiché invece la bilancia si abbassò dalla parte dell'oro, si poté dedurre che, essendo pari i pesi, la corona aveva subito una spinta idrostatica verso l'alto maggiore, quindi doveva avere un maggiore volume, il che implicava che doveva essere stata fabbricata impiegando anche altri metalli, in quanto tali metalli (come per esempio l'argento) avevano densità minore dell'oro.

Secondo un altro aneddoto altrettanto famoso Archimede (o Gerone) sarebbe riuscito a spostare una nave grazie ad una macchina da lui inventata. Esaltato dalla capacità di costruire macchine che potessero spostare grandi pesi con piccole forze, in questa o in un'altra occasione avrebbe esclamato: “datemi un punto d'appoggio e solleverò la Terra”. La frase è riportata, con piccole varianti, da vari autori, tra i quali Pappo di Alessandria e Simplicio.

Leggende sulla morte

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Presunta tomba di Archimede .
(GRC)

«Ἄφνω δ'ἐπιστάντος αὐτῷ στρατιώτου καὶ κελεύοντος ἀκολουθεῖν πρὸς Μάρκελλον, οὐκ ἐβούλετο πρὶν ἢ τελέσαι τὸ πρόβλημα καὶ καταστῆσαι πρὸς τὴν ἀπόδειξιν. Ὁ δ'ὀργισθεὶς καῖ σπασάμενος τὸ ξίφος ἀνεῖλεν αὐτόν»

(IT)

«Ad un tratto entrò nella stanza un soldato romano che gli ordinò di andare con lui da Marcello. Archimede rispose che sarebbe andato dopo aver risolto il problema e messa in ordine la dimostrazione. Il soldato si adirò, sguainò la spada e lo uccise.»

(Plutarco, Vita di Marcello, 19, 9)
La morte di Archimede
Presunta tomba di Archimede a Siracusa

La leggenda ha tramandato ai posteri anche le ultime parole di Archimede, rivolte al soldato che stava per ucciderlo: «noli, obsecro, istum disturbare» (non rovinare, ti prego, questo disegno). Plutarco, dal canto suo, narra tre differenti versioni della morte di Archimede.

Nella prima afferma che un soldato romano avrebbe intimato ad Archimede di seguirlo da Marcello; al suo rifiuto il soldato lo avrebbe ucciso.

Nella seconda un soldato romano si sarebbe presentato per uccidere Archimede e quest'ultimo lo avrebbe pregato invano di lasciargli terminare la dimostrazione nella quale era impegnato.

Nella terza, dei soldati avrebbero incontrato Archimede mentre portava a Marcello alcuni strumenti scientifici, meridiane, sfere e squadre, in una cassetta; pensando che la cassetta contenesse oro, i soldati lo avrebbero ucciso per impadronirsene.

Secondo Tito Livio e Plutarco, Marcello, che avrebbe conosciuto e apprezzato l'immenso valore del genio di Archimede e forse avrebbe voluto utilizzarlo al servizio della Repubblica, sarebbe stato profondamente addolorato per la sua morte. Questi autori raccontano che fece dare onorevole sepoltura allo scienziato. Ciò non è però riferito da Polibio, che è considerato fonte più autorevole sull'assedio e il saccheggio di Siracusa.

Cicerone racconta di avere scoperto la tomba di Archimede grazie a una sfera inscritta in un cilindro, che vi sarebbe stata scolpita in ottemperanza alla volontà dello scienziato.

(LA)

«Cuius [i.e. Archimedis] ego quaestor ignoratum ab Syracusanis, cum esse omnino negarent, saeptum undique et vestitum vepribus et dumetis indagavi sepulcrum. Tenebam enim quosdam senariolos, quos in eius monumento esse inscriptos acceperam, qui declarabant in summo sepulcro sphaeram esse positam cum cylindro. Ego autem cum omnia collustrarem oculis - est enim ad portas Agragantinas magna frequentia sepulcrorum - animum adverti columellam non multum e dumis eminentem, in qua inerat sphaerae figura er cylindri. Atque ego statim Syracusanis - erant autem principes mecum - dixi me illud ipsum arbitrari esse, quod quaererem. Immissi cum falcibus multi purgarunt et aperuerunt locum. Quo cum patefactus esset aditus, ad adversam basim accessimus. Apparebat epigramma exesis posterioribus partibus versiculorum dimidiatum fere. ita nobilissima Graeciae civitas, quondam vero etiam doctissima, sui civis unius acutissimi monumentum ignorasset, nisi ab homine Arpinate didicisset.»

(IT)

«Io quand'ero questore scoprii la sua tomba [di Archimede], sconosciuta ai Siracusani, cinta con una siepe da ogni lato e vestita da rovi e spineti, sebbene negassero completamente che esistesse. Tenevo, infatti, alcuni piccoli senari, che avevo sentito essere scritti nel suo sepolcro, i quali dichiaravano che alla sommità del sepolcro era posta una sfera con un cilindro. Io, poi, osservando con gl'occhi tutte le cose - c'è, infatti, alle porte Agrigentine una grande abbondanza di sepolcri - volsi l'attenzione ad una colonnetta non molto sporgente in fuori da dei cespugli, sulla quale c'era sopra la figura di una sfera e di un cilindro. E allora dissi subito ai Siracusani - c'erano ora dei principi con me - che io ero testimone di quella stessa cosa che stavo cercando. Mandati dentro con falci, molti ripulirono e aprirono il luogo. Per il quale, dopo che era stato aperto l'accesso, arrivammo alla base posta di fronte. Appariva un epigramma sulle parti posteriori corrose, di brevi righe, quasi dimezzato. Così la nobilissima cittadinanza della Grecia, una volta veramente molto dotta, avrebbe ignorato il monumento del suo unico cittadino acutissimo, se non lo fosse venuto a sapere da un uomo di Arpino.»

(Cicerone, Tusculanae disputationes V 23, 64-66)

Archimede ingegnere e inventore

Ordigni bellici

Stampa che riproduce l'uso degli specchi ustori durante l'assedio romano a Siracusa

Archimede deve gran parte della popolarità al suo contributo alla difesa di Siracusa contro l'assedio romano durante la seconda guerra punica. Polibio, Tito Livio e Plutarco descrivono macchine belliche di sua invenzione, tra cui la manus ferrea, artiglio meccanico in grado di ribaltare le imbarcazioni nemiche, e armi da getto da lui perfezionate.

Nel II secolo lo scrittore Luciano di Samosata, riportò che durante l'assedio di Siracusa (circa 214-212 a.C.), Archimede distrusse le navi nemiche con il fuoco. Secoli dopo, Antemio di Tralles menziona delle "lenti con il fuoco" come armi progettate da Archimede. Lo strumento, chiamato " specchi ustori di Archimede", fu progettato con lo scopo di concentrare la luce solare sulle navi che si avvicinavano, causando loro incendi.

Questa presunta arma fu oggetto di dibattiti sulla sua veridicità fin dal Rinascimento. René Descartes la ritenne falsa, mentre i ricercatori moderni hanno tentato di ricreare l'effetto usando i soli mezzi disponibili ad Archimede. È stato ipotizzato che una vasta schiera di scudi di bronzo o rame lucidati fossero stati impiegati come specchi per concentrare la luce solare su una nave. Questo avrebbe utilizzato il principio della riflessione parabolica in un modo simile a una fornace solare.

Un esperimento per testare gli specchi ustori di Archimede fu effettuato nel 1973 dallo scienziato greco Ioannis Sakkas. L'esperimento ha avuto luogo presso la base navale di Skaramagas, fuori Atene. In questa occasione sono stati utilizzati 70 specchi, ciascuno con un rivestimento di rame e con una dimensione di circa 1 metro e mezzo. Gli specchi sono stati puntati su una riproduzione realizzata in compensato di una nave da guerra romana ad una distanza di circa 50 m. Quando gli specchi hanno concentrato i raggi solari con precisione la nave ha preso fuoco in pochi secondi. Il modello aveva un rivestimento di vernice di catrame che può aver aiutato la combustione. Un rivestimento tale sarebbe stato comune sulle navi di quell'epoca.

L'orologio ad acqua

Un manoscritto arabo contiene la descrizione di un ingegnoso orologio ad acqua progettato da Archimede. Nell'orologio il flusso dell'acqua uscente era mantenuto costante grazie all'introduzione di una valvola galleggiante. L'orologio era costituito da due vasche, una sopraelevata rispetto all'altra. La più alta era dotata di un rubinetto che erogava un flusso costante di acqua nella vasca inferiore. Sopra la vasca inferiore era posto un asse girevole al quale era arrotolato un filo alle cui estremità erano legate una piccola pietra e un galleggiante. All'inizio della giornata la vasca inferiore doveva essere vuota e il filo veniva tirato giù affinché il galleggiante toccasse il fondo e la pietra salisse in cima. Aprendo il rubinetto la vasca inferiore cominciava a riempirsi sollevando il galleggiante e facendo abbassare la pietra. La lunghezza del filo e il flusso dell'acqua erano calibrati in modo che fossero le 12 quando il galleggiante si trovava all'altezza della pietra e le 6 del pomeriggio quando la pietra era sul fondo. Archimede si pose il problema di mantenere costante il flusso dal rubinetto: infatti, svuotandosi la vasca superiore, si riduceva la pressione dell'acqua ed il flusso diminuiva. Allora aggiunse, più in alto delle prime due una terza vasca che, tramite un galleggiante riempiva la seconda per mantenerne costante il livello e dunque la pressione con cui l'acqua fuoriusciva dal rubinetto.

Un merito che oggi viene riconosciuto ad Archimede è anche quello di essere stato il primo a interpretare il tempo come una grandezza fisica analizzabile con gli strumenti matematici usati per le grandezze geometriche (ad esempio nel trattato Sulle spirali rappresenta intervalli di tempo con segmenti e applica loro la teoria delle proporzioni di Euclide).

Invenzioni meccaniche

Il principio del sollevamento della vite di Archimede

Ateneo, Plutarco e Proclo raccontano che Archimede aveva progettato una macchina con la quale un solo uomo poteva spostare una nave con equipaggio e carico. In Ateneo l'episodio è riferito al varo della Siracusia, mentre Plutarco parla di un esperimento dimostrativo, eseguito per mostrare al sovrano le possibilità della meccanica. Questi racconti contengono indubbiamente dell'esagerazione, ma il fatto che Archimede avesse sviluppato la teoria meccanica che permetteva la costruzione di macchine con elevato vantaggio meccanico assicura che fossero nati da una base reale.

Secondo le testimonianze di Ateneo e Diodoro Siculo egli aveva inventato quel meccanismo per il pompaggio dell'acqua, impiegato per l'irrigazione dei campi coltivati, noto come vite di Archimede.

«Non mi pare che in questo luogo sia da passar con silenzio l'invenzione di Archimede d'alzar l'acqua con la vite: la quale non solo è maravigliosa, ma è miracolosa; poiché troveremo, che l'acqua ascende nella vite discendendo continuamente»

(Galileo Galilei, Mecaniche)

Lo storico della tecnologia Andre W. Sleeswyk ha attribuito ad Archimede anche l'odometro, descritto da Vitruvio.

L'Architronito, descritto da Leonardo da Vinci, era un cannone a vapore la cui invenzione fa risalire ad Archimede di Siracusa attorno al 200 a.C. Si pensa che la macchina fu usata nell'assedio di Siracusa nel 212 a.C. e nel 49 a.C. come attesta Giulio Cesare durante l'assedio di Marsiglia.

Il planetario

La macchina di Anticitera

Una delle realizzazioni di Archimede più ammirate nell'antichità fu il planetario. Le migliori informazioni su quest'oggetto sono fornite da Cicerone, il quale scrive che nell'anno 212 a.C., quando Siracusa fu saccheggiata dalle truppe romane, il console Marco Claudio Marcello portò a Roma un apparecchio costruito da Archimede che riproduceva su una sfera la volta del cielo e un altro che prediceva il moto apparente del sole, della luna e dei pianeti, equivalente quindi a una moderna sfera armillare. Cicerone, riferendo le impressioni di Gaio Sulpicio Gallo che aveva potuto osservare lo straordinario oggetto, sottolinea come il genio di Archimede fosse riuscito a generare i moti dei pianeti, tra loro tanto diversi, a partire da un'unica rotazione. È noto grazie a Pappo che Archimede aveva descritto la costruzione del planetario nell'opera perduta Sulla Costruzione delle Sfere.

La scoperta della macchina di Anticitera, un dispositivo a ingranaggi che secondo alcune ricerche risale alla seconda metà del II sec. a.C., dimostrando quanto fossero elaborati i meccanismi costruiti per rappresentare il moto degli astri, ha riacceso l'interesse sul planetario di Archimede. Un ingranaggio identificabile come appartenuto al planetario di Archimede sarebbe stato rinvenuto nel luglio del 2006 a Olbia; gli studi sul reperto sono stati presentati al pubblico nel dicembre del 2008. Secondo una ricostruzione il planetario, che sarebbe passato ai discendenti del conquistatore di Siracusa, potrebbe essere andato perso nel sottosuolo di Olbia (probabile scalo del viaggio) prima del naufragio della nave che trasportava Marco Claudio Marcello (console 166 a.C.) in Numidia.

(LA)

«Nam cum Archimedes lunae solis quinque errantium motus in sphaeram inligavit, effecit idem quod ille, qui in Timaeo mundum aedificavit, Platonis deus, ut tarditate et celeritate dissimillimos motus una regeret conversio. Quod si in hoc mundo fieri sine deo non potest, ne in sphaera quidem eosdem motus Archimedes sine divino ingenio potuisset imitari.»

(IT)

«In realtà, quando Archimede racchiuse in una sfera i movimenti della luna, del sole e dei cinque pianeti, fece lo stesso che colui che nel Timeo edificò l'universo, il dio di Platone, e cioè che un'unica rivoluzione regolasse movimenti molto diversi per lentezza e velocità. E se questo non può avvenire nel nostro universo senza la divinità, neanche nella sfera Archimede avrebbe potuto imitare i medesimi movimenti senza un'intelligenza divina.»

(Cicerone, Tusculanae disputationes I, 63)

Misura del diametro della pupilla

Nell'Arenario (libro I, cap. 13), dopo aver accennato ad un metodo per procedere alla misura angolare del Sole utilizzando un regolo graduato su cui posizionava un piccolo cilindro, Archimede nota che l'angolo così formatosi (vertice nell'occhio e rette tangenti ai bordi del cilindro e del Sole) non esprime una misura corretta in quanto non si conosce ancora la dimensione della pupilla. Posizionati quindi un secondo cilindro di diverso colore e collocato l'occhio in posizione più arretrata rispetto al termine del regolo, ottiene in questo modo con l'utilizzo del regolo il diametro medio della pupilla e, di conseguenza, una stima più precisa del diametro del sole. La pur breve discussione in materia lascia presumere che in materia Archimede più che riferirsi agli scritti euclidei tenesse in questo caso conto anche degli studi di Erofilo di Calcedonia che alla composizione dell'occhio aveva dedicato diversi scritti, tutti interamenti perduti e noti soltanto per le citazioni che ne fa Galeno.

Archimede matematico e fisico

I risultati scientifici di Archimede possono essere esposti descrivendo prima il contenuto delle opere conservate e poi le testimonianze sui lavori perduti.

Opere conservate

Principio di leva

Il disegno illustra il principio della leva.
(LA)

«da mihi ubi consistam, et terram movebo»

(IT)

«Dammi dove appoggiarmi e sposterò la terra!»

(in Pappi Alexandrini Collectionis, a cura di Friedrich Hultsch, Berlino, 1878, vol. III, Liber Octavus, Problema VI, Propositio X, p. 1061)

Partendo dall'idea di una bilancia, composta da un segmento e da un fulcro, cui sono appesi due corpi in equilibrio, si può affermare che il peso dei due corpi è direttamente proporzionale all'area ed al volume dei corpi stessi. Secondo la leggenda Archimede avrebbe detto: "datemi una leva e vi solleverò il mondo" dopo aver scoperto la seconda legge sulle leve. Utilizzando leve vantaggiose, infatti, è possibile sollevare carichi pesanti con una piccola forza d'applicazione, secondo la legge:

dove P è la potenza e R la resistenza, mentre br e bp sono i rispettivi bracci d'azione.

Frammenti e testimonianze su opere perdute

Poliedri semiregolari

Un poliedro archimedeo, il dodecaedro camuso

In un'opera perduta, di cui fornisce informazioni Pappo, Archimede aveva descritto la costruzione di tredici poliedri semiregolari, che ancora sono detti poliedri archimedei (nella terminologia moderna i poliedri archimedei sono quindici poiché vi s'includono anche due poliedri che Archimede non aveva considerato, quelli chiamati impropriamente prisma archimedeo e antiprisma archimedeo).

Formula di Erone

La formula di Erone, che esprime l'area di un triangolo a partire dai lati, è così chiamata perché è contenuta nei Metrica di Erone di Alessandria, ma secondo la testimonianza di al-Biruni il vero autore sarebbe Archimede, che l'avrebbe esposta in un'altra opera perduta. La dimostrazione trasmessa da Erone è particolarmente interessante perché un quadrato vi viene elevato al quadrato, un procedimento strano nella matematica greca, in quanto l'ente ottenuto non è rappresentabile nello spazio tridimensionale.

Altre opere

Un passo di Ipparco in cui si citano determinazioni dei solstizi compiute da Archimede, trasmesso da Tolomeo, fa pensare che egli avesse scritto anche opere di astronomia. Pappo, Erone e Simplicio gli attribuiscono vari trattati di meccanica e diversi titoli di opere di geometria sono trasmessi da autori arabi.

Il Palinsesto di Archimede

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Palinsesto di Archimede.
Una pagina distesa del Palinsesto di Archimede. Il manoscritto di Archimede è visibile come un testo più tenue scritto dall'alto in basso; il testo del libro di preghiere è visibile sovrascritto perpendicolarmente su due pagine separate dalla cucitura alla piega centrale.

Il Palinsesto di Archimede è un codice pergamenaceo medioevale, contenente nella scrittura sottostante alcune opere dello scienziato siracusano. Nel 1906, il professore danese Johan Ludvig Heiberg esaminando a Costantinopoli 177 fogli di pergamena di pelle di capra, contenenti preghiere del XIII secolo (il palinsesto), scoprì che vi erano in precedenza degli scritti di Archimede. Secondo una pratica molto diffusa all'epoca, a causa del costo elevato della pergamena, dei fogli già scritti furono raschiati per riscriverci sopra altri testi, riutilizzando il supporto. Si conosce il nome dell'autore dello scempio: Johannes Myronas, che finì la riscrittura delle preghiere il 14 aprile del 1229. Il palinsesto trascorse centinaia di anni in una biblioteca del monastero di Costantinopoli prima di essere trafugato e venduto a un collezionista privato nel 1920. Il 29 ottobre 1998 è stato venduto all'asta da Christie's a New York a un acquirente anonimo per due milioni di dollari.

Il codice contiene sette trattati di Archimede, tra cui l'unica copia superstite in greco (bizantino) di Sui corpi galleggianti e l'unica del Metodo dei teoremi meccanici, nominato nella Suida, che si riteneva fosse andato perduto per sempre. Anche lo Stomachion è stato identificato nelle pagine, con un'analisi più precisa. Il palinsesto è stato studiato presso il Walters Art Museum di Baltimora, nel Maryland, dove è stato sottoposto a una serie di test moderni, compreso l'uso di raggi ultravioletti e raggi X per poterne leggere il testo sottostante. Al termine del lavoro Reviel Netz, William Noel, Natalie Tchernetska e Nigel Wilson pubblicarono The Archimedes Palimpsest (2011) in due volumi: il primo volume è prevalentemente codicologico, descrivendo i manoscritti, le loro vicende, le tecniche usate nel recupero e la presentazione dei testi; il secondo volume contiene, a pagine affiancate, la pagina distesa fotografata del codice con la trascrizione del testo greco e la traduzione inglese. Le pagine del palinsesto sono disponibili in rete come immagini fotografiche, ma di quasi impossibile lettura.

I trattati di Archimede contenuti nel Palinsesto sono: Sull'equilibrio dei piani, Sulle spirali, Misura di un cerchio, Sulla sfera e sul cilindro, Sui corpi galleggianti, Metodo dei teoremi meccanici e Stomachion. Il palinsesto contiene ancora due orazioni di Iperide (Contro Dionda e Contro Timandro), un commento alle Categorie di Aristotele (probabilmente una parte del commento Ad Gedalium di Porfirio) e, di autori ignoti, una Vita di san Pantaleone, due altri testi e un Menaion, un testo della chiesa orientale per festività non dipendenti dalla Pasqua.

Il ruolo di Archimede nella storia della scienza

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Scienza greco-romana e Metodo scientifico.
Ritratto ideale di Archimede

L'opera di Archimede rappresenta uno dei punti massimi dello sviluppo della scienza nell'antichità. In essa, la capacità di individuare insiemi di postulati utili a fondare nuove teorie si unisce con la potenza e originalità degli strumenti matematici introdotti, con un interesse maggiore verso i fondamenti della scienza e della matematica. Plutarco racconta infatti che Archimede fu convinto dal re Gerone a dedicarsi agli aspetti più applicativi e a costruire macchine, di carattere principalmente bellico, per aiutare più concretamente lo sviluppo e la sicurezza della società. Archimede si dedicò alla matematica, alla fisica e all'ingegneria, in un'epoca in cui le divisioni fra queste discipline non erano nette come oggi, ma in cui comunque, secondo la filosofia platonica, la matematica doveva avere un carattere astratto e non applicativo come nelle sue invenzioni. I lavori di Archimede costituirono quindi per la prima volta una importante applicazione delle leggi della geometria alla fisica, in particolare alla statica e all'idrostatica.

Nell'antichità Archimede e le sue invenzioni furono descritte con meraviglia e stupore dagli autori classici greci e latini, come Cicerone, Plutarco e Seneca. Grazie a questi racconti nel tardo medioevo e all'inizio dell'era moderna, un grande interesse mosse la ricerca e il recupero delle opere di Archimede, trasmesse e talvolta perdute durante il medioevo per via manoscritta. La cultura romana rimase quindi impressionata per lo più dalle macchine di Archimede piuttosto che dai suoi studi matematici e geometrici, al punto che lo storico della matematica Carl Benjamin Boyer si spinse ad affermare in modo più che pungente che la scoperta della tomba di Archimede da parte di Cicerone è stato il maggior contributo, forse l'unico, dato alla matematica dal mondo romano.

Piero della Francesca, Stevino, Galileo, Keplero, e altri fino Newton, studiarono, ripresero ed estesero in maniera sistematica gli studi scientifici di Archimede, in particolare riguardo al calcolo infinitesimale.

L'introduzione del moderno metodo scientifico di studio e verifica dei risultati ottenuti fu ispirato da Galileo al metodo con cui Archimede portava avanti e dimostrava le sue intuizioni. Inoltre lo scienziato pisano trovò il modo di applicare i metodi geometrici simili a quelli di Archimede per descrivere il moto accelerato di caduta dei corpi, riuscendo finalmente a superare la descrizione della fisica dei soli corpi statici sviluppata dalla scienziato siracusano. Galileo stesso nei suoi scritti definiva Archimede "il mio maestro", tanta era la venerazione per i suoi lavori e il suo lascito.

Lo studio delle opere di Archimede, impegnò perciò a lungo gli studiosi della prima età moderna e costituì un importante stimolo allo sviluppo della scienza come è intesa oggi. L'influenza di Archimede negli ultimi secoli (ad esempio quella sullo sviluppo di un'analisi matematica rigorosa) è oggetto di valutazioni discordi da parte degli studiosi.

In onore di Archimede

La medaglia Fields.

Arte

Nel celebre affresco di Raffaello Sanzio, La scuola di Atene , Archimede viene disegnato intento a studiare la geometria. Le sue sembianze sono di Donato Bramante.

Il poeta tedesco Schiller ha scritto la poesia Archimede e il giovinetto.

Statua di Archimede a Siracusa

L'effigie di Archimede compare anche su francobolli emessi dalla Germania dell'Est (1973), dalla Grecia (1983), dall'Italia (1983), dal Nicaragua (1971), da San Marino (1982), e dalla Spagna (1963).

Il gruppo rock progressivo italiano, Premiata Forneria Marconi all'interno dell'album Stati di immaginazione ha dedicato l'ultimo brano allo scienziato col titolo Visioni di Archimede nel cui video si ripercorrono la vita e le sue invenzioni.

Archimede è il protagonista del romanzo Il matematico che sfidò Roma di Francesco Grasso (Edizioni 0111, Varese, 2014).

Scienza

Il 14 marzo si festeggia in tutto il mondo il pi greco day, in quanto nei paesi anglosassoni corrisponde al 3/14. In quel giorno vengono organizzati concorsi di matematica e ricordati anche i contributi di Archimede, che di pi greco dette la prima stima accurata. In onore di Archimede sono stati nominati sia il cratere lunare Archimede che l'asteroide 3600 Archimede.

Nella Medaglia Fields, massima onorificenza per matematici, vi è nel verso della medaglia il ritratto di Archimede con iscritta una frase a lui attribuita: Transire suum pectus mundoque potiri.

Tecnologia

È stata progettata e costruita in Sicilia la Archimede solar car 1.0, un'automobile a propulsione solare.

È stato realizzato il Progetto Archimede, una centrale solare presso Priolo Gargallo che utilizza una serie di specchi per produrre energia elettrica.

Musei e monumenti

A Siracusa è stata eretta una statua in onore dello scienziato e il Tecnoparco Archimede, un'area in cui sono state riprodotte le invenzioni.

A Archea Olympia in Grecia c'è un Museo dedicato ad Archimede.

Bibliografia

Fonti antiche

  • Plutarco, Vita di Marcello.
  • Apuleio, Apologia.
  • Ateneo di Naucrati, Deipnosophistai .
  • Galeno, De temperamentis.
  • Diodoro Siculo, Bibliotheca historica.
  • Marco Tullio Cicerone, De natura deorum.
  • Marco Tullio Cicerone, De re publica.
  • Marco Tullio Cicerone, Tusculanae disputationes.
  • Tito Livio, Ab Urbe condita libri.
  • Claudio Tolomeo, Almagesto.
  • Pappo di Alessandria, Collectio.

Edizioni moderne delle opere

  • (GRCLA) Heiberg J. L. (a cura di), Archimedis opera omnia cum commentariis Eutocii, 3 volumi, Leipzig, Teubner, 1910-15. Ristampato a Stuttgart, 1972. ISBN non esistente
  • Tropfke J., Die Siebenckabhandlung des Archimedes, I, Osiris, 1936, pp. 636-651. ISBN non esistente
  • (GRCFR) Mugler Charles (a cura di), Archimède, 4 volumi, Parigi, Les Belles Lettres, 1972. ISBN non esistente
  • Archimede, Opere, Torino, UTET, 1974. ISBN non esistente
  • Hill, D. R., On the Construction of Water Clocks: Kitab Arshimidas fi'amal al-binkamat, Londra, Turner & Devereux, 1976. ISBN non esistente
  • d'Alessandro, P. e Napolitani, P.D., Archimede Latino. Iacopo da San Cassiano e il corpus archimedeo alla metà del Quattrocento. Con edizione della Circuli dimensio e della Quadratura parabolae, Parigi, Les Belles Lettres, 2012, ISBN 978-2-251-22001-7.

Letteratura secondaria

  • (LA) Jacques Lefèvre d'Étaples, Meteorologia Aristotelis, Schumann, 1516. ISBN non esistente
  • (EN) Clagett M., Archimedes in the Middle Ages, I, University of Wisconsin Press, Madison 1964; II-III-IV, American Philosophical Society, Philadelphia 1976, 1978, 1980, 1984. ISBN 978-0-87169-117-0
  • Dijksterhuis Eduard, Archimede, Firenze, Ponte alle Grazie, 1989, ISBN 978-88-7928-168-3.
  • Dollo Corrado (a cura di), Archimede. Mito, Tradizione, Scienza, Firenze, Olschki, 1992, ISBN 978-88-222-3952-5.
  • Geymonat Mario, Il grande Archimede, Roma, Sandro Teti Editore, 2008, ISBN 978-88-88249-23-0.
  • (EN) Knorr W. R., Textual Studies in Ancient and Medieval Geometry, Boston, Birkhäuser, 1989, ISBN 978-0-8176-3387-5.
  • Napolitani Pier Daniele, Archimede: alle radici della scienza moderna - collana "I grandi della scienza", in Le Scienze, IV, n. 22, ottobre 2001.
  • Pastore Giovanni, Il planetario di Archimede ritrovato, 2010, Roma, ISBN 978-88-904715-2-0.
  • Vacca Giovanni, Archimede - Enciclopedia Biografica Universale, Roma, Istituto dell'Enciclopedia italiana, 2006, pp. 664–679. ISBN non esistente
  • Carl Benjamin Boyer, Storia della matematica, Mondadori, 1990, ISBN 978-88-04-33431-6.
  • Lucio Russo, La rivoluzione dimenticata, VII edizione, Milano, Feltrinelli, 2013, ISBN 978-88-07-88323-1.
  • (EN) Paul Hoffman, Archimedes' Revenge: The Joys and Perils of Mathematics, Fawcett Colombine, 1997, ISBN 978-0-449-00089-2.
  • Σ.Α. Παϊπέτης - M. Ceccarelli (eds.), «The Genius of Archimedes». 23 Centuries of Influence on the Fields of Mathematics, Science, and Engineering. Proceedings of the International Symposium (Syracuse, 8-10/6/2010), Dordrecht, 2010.

Questo articolo utilizza materiale dall'articolo Wikipedia Archimede, che viene rilasciato sotto il Creative Commons Attribution-Share-Alike License 3.0.