유체 동역학 에서 베르누이 방정식(영어: Bernoulli's equation)은 이상 유체(ideal fluid)에 대하여, 유체에 가해지는 일이 없는 경우에 대해, 유체의 속도와 압력, 위치 에너지 사이의 관계를 나타낸 식이다. 이 식은 1738년 다니엘 베르누이가 그의 저서 《유체역학》(Hydrodynamica)에서 발표하였다.
베르누이 방정식은, 흐르는 유체에 대하여 유선 (streamline) 상에서 모든 형태의 에너지의 합은 언제나 일정하다는 점을 설명하고 있다.
베르누이의 방정식은 비압축성 유동(incompressible flow)에 대해서만 유효하다. 대부분의 경우 액체는 그 밀도가 일정하다고 생각할 수 있다. 따라서 이런 경우 액체는 비압축성이고, 그 유동은 비압축성 유동으로 생각할 수 있다. 기체의 경우는, 그 유동 속도가 매우 낮아 유선에 따른 기체의 밀도 변화가 무시할 만큼 작은 경우에 비압축성으로 간주할 수 있다.
베르누이 방정식을 적용하기 위해서는 다음과 같은 가정이 만족되어야 한다.
베르누이 방정식의 원래 형태는 다음과 같다.
여기서,
이다.
위 방정식은 다음과 같이 쓸 수 있다.
여기서,
베르누이 방정식을 실제로 쓸 때는, 유선(streamline) 상의 유동에서 가 0이거나 무시할 만큼 작은 경우가 많다. 이런 경우 위 식은 다음과 같이 간략해진다.
여기에서 는 전압력 (total pressure)이라 부르며, 는 전압력 및 동압력과 구별하기 위하여 정압력 (static pressure)이라 부르는 경우가 많다. 또한, 보통 그냥 "압력"이라 하면 정압력을 지칭하는 경우가 많다.
따라서 단순화된 베르누이 방정식은 다음과 같이 요약될 수 있다.
즉, 베르누이 방정식은 "유선 상에서의 전압력은 일정하다"는 말로 해석될 수 있다. 또한 만약 그 유동이 한 곳에서 출발하였다면, "그 유동 내의 모든 점에서의 전압력은 일정하다"고 할 수 있다. 그러나 앞서도 언급하였듯이 이 식은 경계층 내에는 적용되지 않음을 기억하여야 한다.