Геофизическая гидродинамика, Астрофизическая гидродинамика — раздел гидродинамики, сконцентрированный на исследовании явлений и физических механизмов, действующих в естественных крупномасштабных турбулентных течениях жидкой или газовой сплошной среды на вращающихся объектах.
Общие проблемы:
К геофизической гидродинамике относится :
К астрофизической гидродинамике относится:
Все эти, казалось бы, далекие друг от друга области наук, объединены подобными физическими механизмами, приводящими в движение общую циркуляцию турбулентной стратифицированной жидкости или газа, (в том числе электропроводящей), во вращающихся объектах.
Главная практическая цель исследований в области геофизической гидродинамики — создание эффективного метода численного прогноза погоды на разные сроки, создание теории климата, метода предсказания опасных явлений погоды, разработка метода прогнозирования изменений геомагнитного поля. Исследования в области астрофизики имеют исключительную познавательную ценность, стимулирующие успехи в других областях астрономии и физики, формирующие современное мировоззрение.
Поставленные задачи исследуются методами теоретической физики путём моделирования явлений системой дифференциальных уравнений гидродинамики, (магнитной гидродинамики), ( релятивистской гидродинамики), термодинамики, с учётом достижений теории турбулентности ( статистической гидромеханики), оптики сплошных сред, ядерной физики, математической физики. Математическая модель явления, в некоторых упрощенных случаях, поддается математическому анализу. В большинстве случаев, результат может быть получен только путём численного моделирования. Численное решение задач геофизической (астрофизической) гидродинамики, в том числе численный прогноз погоды, относится к самым сложным задачам вычислительной математики.
Основой геофизической гидродинамики являются уравнения движения вязкой жидкости Навье-Стокса, уравнение теплопроводности. После осреднения уравнений согласно методу Рейнольдса, они становятся применимыми к турбулентному состоянию. К фундаментальным принципам геофизической гидродинамики относятся также уравнение вихря, уравнение потенциального вихря.
Источником данных для построения физических моделей в геофизической гидродинамике являются наблюдения за общей циркуляцией и отдельными явлениями в атмосфере Земли, в мировом океане, в атмосферах других планет и спутников планет, а также специальные натурные (в том числе и экспедиционные) исследования. Некоторые явления геофизической гидродинамики (цикл индекса или «васцилляция») удается смоделировать в лабораторных экспериментах. Наблюдательная астрономия (в радио, оптическом, рентгеновском и гамма) диапазонах поставляет данные для астрофизической гидродинамики.
Разные разделы геоастрофизической гидродинамики обогащают друг друга идеями, основанными на аналогии физических механизмов. Например, модель строения и динамики Солнца в значительной мере опирается на результаты, достигнутые в динамической метеорологии. Тоже можно сказать и о теории дисковой аккреции, в которой аналогия между явлением цикла индекса с переменностью рентгеновских звёзд и активизацией ядер галактик оказалась плодотворной.
Достижения геофизической гидродинамики используются для решения различных прикладных задач. Прикладные задачи в геофизической гидродинамики решают прикладная метеорология, гидрология, океанология, глобальная экология.