コーヒーの滴の蒸発により作られたしみ

物理学においてコーヒーリングとは、粒子を含む液体が蒸発した後に現れる、リング状の蒸発残渣物で、1997年 R. D. Deegan らにより報告された。こぼれたコーヒーが蒸発した後に、このような特徴的なリング状の析出物が現れるため、このような名前が付けられている。ただし、これはコーヒーだけに見られる現象ではなく、例えば赤ワインをこぼした場合などでも見ることができる。これら及びこれらと類似のリングの形成の背後にある機構はコーヒーリング効果として、他の例ではコーヒーステイン効果もしくは単にリングステインとして知られている。

流れのメカニズム

コーヒーリングのパターンはしずくに渡って異なる蒸発速度により誘発される毛管流から生じる。縁から蒸発する液体は内部の液体から補充されていく。このような中心から外向きの流れは、ほぼ全ての分散質を縁の部分に運ぶことができる。時間の関数としてこの過程は「ラッシュアワー」効果を示す。すなわち、乾燥過程の最終段階において外向きの流れは急な加速を示す。

蒸発によりマランゴニ対流が液滴内部に誘起される。流れが強い場合、液滴の中心に粒子が戻る。したがって、粒子が縁に蓄積するためには弱いマランゴニ対流でなければならず、もしくは流れを乱す何かが生じなければならない。例えば、界面活性剤を加えることで液体の表面張力勾配を小さくし誘起された流れを乱すことができる。水のマランゴニ対流はもともと弱く、天然の界面活性剤によっても著しく減少する。

液滴中の懸濁粒子と液滴の自由表面の相互作用は、コーヒーリングを作るうえで重要である。「液滴が蒸発すると、自由表面が崩壊し懸濁粒子は捕捉される...最終的に全ての粒子が自由表面に捕捉され、液滴の縁に向かう残りの行程のためにそこにとどまる」 この結果は界面活性剤を使用して液滴内部のバルク流を制御しようとするのではなく、液滴の表面張力を変化させることにより溶質粒子の動きを操作することができることを意味する。

抑制

ポリスチレン粒子(直径1.4 µm)とセルロース繊維(直径約20 nm、長さ約1 µm)のコロイド混合物により作られたしみ。ポリスチレン濃度は0.1wt%に固定され、セルロースの濃度は0(左)、0.01(中)、0.1(右)wt%である。

コーヒーリングのパターンは、プリンテッド・エレクトロニクスのように乾燥後の堆積物を均一に塗布する必要がある場合に有害となる。これはコーヒーリング効果を引き起こす球状粒子に対してセルロース繊維などの細長い粒子を添加することにより抑制することができる。添加する粒子の大きさおよび重量割合は主要な粒子よりも小さくてよい。

液滴内部の流れを制御することが均一な膜を生成するための強力な方法であるということも報告されている。例えば、蒸発中に起こる溶質Marangoni流を利用することにより。

沸点の溶媒と高沸点の溶媒の混合物はコーヒーリング効果を抑制し、沈殿した溶質形状をリング状からドット状に変化させることが示された。

基板温度の制御は水ベースのPEDOT:PSS溶液の液滴により形成されるコーヒーリングを抑制するのに有効な方法であることが示された。親水性・疎水性を問わず基板が加熱されていれば、Marangoni対流の効果によってリングはより薄くなり、その内側にも沈殿物が現れる。

滑りやすい表面を持つ基板を用いて濡れ特性を制御すれば、滴の接触線のピン止めを防げる。それにより、接触線上についた粒子の数を減少させてコーヒーリング効果を抑制することができる。超疎水性もしくは液体がしみ込んだ表面上の滴は接触線がピン止めされる可能性が低く、リング形成を抑制する。

交流電圧エレクトロウェッティングは表面活性物質を加えることなくコーヒーステインを抑制することができる。逆粒子運動は接触線の近くの毛細管力によりコーヒーリング効果を減少させることもある。逆転は毛細管力が幾何学的制約により外向きのコーヒーリング流を越えるときにおこる。

大きさとパターンを決定する要因

コーヒーリングの下限の大きさは液体蒸発と懸濁粒子の運動の間の時間スケールの競合に依存する。液体が3相接触線の近くの粒子の動きよりもはるかに早く蒸発すると、コーヒーリングは上手く形成されない。代わりにこれらの粒子は完全に液体が蒸発した際に表面上に均一に分散する。100nmの大きさの懸濁粒子の場合、コーヒーリング構造の最小の直径は10μm、すなわち人間の毛の太さの約10分の1であることが分かっている。液中の粒子形状はコーヒーリング効果を左右する。多孔質の基板上では浸透、粒子運動、溶媒の蒸発どうしの競合が最終的な沈殿形態を支配する。

液滴の溶液のpHが最終的な沈着パターンに影響を与える。これらのパターン遷移は 静電力 およびファンデルワールス力のようなDLVO相互作用が粒子沈着過程をどのように変化させるかを考慮することにより説明される。

応用

コーヒーリング効果は、毛細管駆動のアセンブリを使用して基板上の粒子を秩序立て、基板上に引き出された前進したメニスカスで固定液滴を置き換えることを望む研究者による対流沈殿に利用される。この過程は蒸発が重力ではなく基板に沿って流れるという点でディップコーティングとは異なる。[ 訳語疑問点 ]

対流沈殿は粒子の配向を制御することができ、その結果、半球状、二量体、ダンベル型の粒子などの非球状粒子から結晶性単層膜が形成される。配向は、蒸発が起こる薄いメニスカス層内の粒子の最大充填状態に達するようにする系により与えられる。それらは溶液中の粒子の体積分率を調整することにより、アセンブリが生じる様々なメニスカスの厚さに沿った特定位置が制御されることを示した。粒子はメニスカスの位置での湿った層の厚さと等しいかどうかにより、粒子の長い方の寸法が長軸に沿って面内か面外に配置される。このような厚さの遷移は球状粒子でも確立された。後に、対流アセンブリは複数の層を組み合わせる際に粒子の配向を制御することができ、その結果、ダンベル形状の粒子から長期3次元コロイド結晶が得られることが示されている。これらの発見はフォトニクスのような応用でのコロイド結晶フィルムの自己組織化にとって魅力的なものであった。近年の進歩により、無機結晶のパターンを組織化するためのコロイド粒子からくるコーヒーリングアセンブリの適用が増加している。[ 訳語疑問点 ]

出典

  1. ^ Patil N. D., Bange P. G., Bhardwaj R., Sharma A, Effects of Substrate Heating and Wettability on Evaporation Dynamics and Deposition Patterns for a Sessile Water Droplet Containing Colloidal Particles Langmuir, Vol. 32 (45), Pages 11958–11972, 2016 DOI: 10.1021/acs.langmuir.6b02769
  2. ^ McBride, Samantha; Dash, Susmita; Varanasi, Kripa (2018-04-01). “Evaporative Crystallization in Drops on Superhydrophobic and Liquid-Impregnated Surfaces”. Langmuir XX (XX): XXXX. doi: 10.1021/acs.langmuir.8b00049. 
  3. ^ Pack, Min; Hu, Han; Kim, Dong-Ook; Yang, Xin; Sun, Ying (2015). “Colloidal drop deposition on porous substrates: competition among particle motion, evaporation and infiltration”. Langmuir 31 (29): 7953–7961. doi: 10.1021/acs.langmuir.5b01846. 
  4. ^ Prevo, Brian G.; Velev, Orlin D. (2004). “Controlled rapid deposition of structured coatings from micro-and nanoparticle suspensions”. Langmuir 20 (6): 2099–2107. doi: 10.1021/la035295j. 
  5. ^ Kumnorkaew, Pisist; Ee, Yik-Khoon; Tansu, Nelson; Gilchrist, James F. (2008). “Investigation of the Deposition of Microsphere Monolayers for Fabrication of Microlens Arrays”. Langmuir 24 (21): 12150–12157. doi: 10.1021/la801100g. 
  6. ^ Hosein, Ian D.; John, Bettina S.; Lee, Stephanie H.; Escobedo, Fernando A.; Liddell, Chekesha M. (2008-12-24). “Rotator and crystalline films viaself-assembly of short-bond-length colloidal dimers”. Journal of Materials Chemistry 19 (3): 344–349. doi: 10.1039/B818613H. 
  7. ^ Hosein, Ian D.; Lee, Stephanie H.; Liddell, Chekesha M. (2010-09-23). “Dimer-Based Three-Dimensional Photonic Crystals”. Advanced Functional Materials 20 (18): 3085–3091. doi: 10.1002/adfm.201000134. 

この記事では、Creative Commons Attribution-Share-Alike License 3.0の下に公開されているWikipediaの記事コーヒーリング効果の資料を使用しています。