Em mecânica dos fluidos, designa-se por escoamento turbulento, fluxo turbulento ou simplesmente turbulência o escoamento de um fluido em que as partículas se misturam de forma não linear, isto é, de forma caótica com turbulência e redemoinhos, em oposição ao fluxo laminar. Neste caso não se aplica a Lei de Poiseuille. Este tipo de fluxo é ruidoso. No âmbito da hidráulica é definido como um fluxo no regime turbulento.

Um escoamento é dito turbulento nas ondas mais altas quando o transporte de momento por convecção é importante e as distribuições de pressão, densidade, velocidade (etc.) apresentam uma componente aleatória de grande variabilidade (no espaço e/ou no tempo).

O problema da turbulência é um dos fenómenos ainda por serem resolvidos na física moderna, sendo que falta uma boa teoria que dê coerência e previsibilidade a uma série de descrições estatísticas e fenomenológicas. As nuvens de chuva são as causas mais comuns de turbulência.

Um fluxo sob regime turbulento pode dar-se em variadas situações, tanto em superfícies livre como em escoamentos confinados, sendo esta habitual em situações de elevado caudal. O parâmetro mais utilizado para a verificação da existência deste regime é o número de Reynolds. Usualmente, caso o valor deste seja superior a 2500, o regime é considerado turbulento. Contudo, este limite pode variar dependendo das situações e dos autores.

História da teoria

O primeiro esforço teórico relevante capaz de com algum sucesso é reconhecido a Andrey Kolmogorov (1945), com a sua célebre lei de potência de um espectro dos "redemoinhos" que representa a distribuição de energia (cascata de energia) que "flui" de redemoinhos maiores para redemoinhos menores. A partir do momento em que algum mecanismo físico introduza uma distribuição de momento angular num fluido em alguma escala (grande, ou pelo menos suficientemente grande para a dissipação devida à viscosidade não ser dominante) gera-se alguma vorticidade não nula. O teorema de circulação de Kelvin garante que esta vorticidade não pode ser eliminada naturalmente (sem viscosidade, na prática) mas a configuração espacial de uma estrutura com turbulência pode evoluir.

Cascata de energia de Kolmogorov

Turbulência causada pela asa de um avião

A sugestão de Kolmogorov foi a de que as estruturas da turbulência só podem evoluir de modo a vorticidade "se concentre" em escalas cada vez menores, mas que ocupam todo o espaço, até que os efeitos viscosos dominem totalmente, e a energia cinética do movimento turbulento torne-se energia interna do escoamento (na forma de calor). Isso ocorre quando a dimensão dos vórtices turbulentos é inferior a 1 cm.

Turbulência e cosmologia

Uma ilustração moderna e pertinente é a da evolução da distribuição de matéria no Universo desde a Época da Recombinação até aos dias de hoje (há simulações numéricas que ilustram o processo) e em que a matéria inicialmente quase perfeitamente dispersa se fragmenta (conservando o momento angular e a vorticidade) e colapsa redistribuindo-se em estruturas filamentares cada vez mais finas.

Exemplo de turbulência

  • O fumo que sai de um cigarro. Se observar com atenção, o fluxo do fumo apresenta-se laminar enquanto ascende, durante alguns centímetros, para se tornar depois instável e turbulento;
  • Hipertensão arterial - No método auscultatório de medida de pressão arterial, quando a desinsuflação do manguito atinge o nível da pressão arterial sistólica, começa a ocorrer um fluxo pela artéria, do tipo turbilionar, que é audível pelo estetoscópio.

Este artigo usa material do artigo Wikipedia Turbulência, que é lançado sob o Creative Commons Attribution-Share-Alike License 3.0.