Турбулентність - це тривимірний нестаціонарний рух рідини, в якому внаслідок розтягування вихорів створюється безперервний розподіл хаотичних пульсацій параметрів потоку (швидкості, тиску і т.д.) в інтервалі довжин хвиль від мінімальних, визначених в'язкими силами, до максимальних, що визначаються граничними умовами течії. (П.Бредшоу).
Турбулентність - це невпорядкований рух, який в загальному випадку виникає в рідинах, газоподібних або крапельних середовищах, коли вони обтікають непроникні поверхні або ж коли сусідні один з одним потоки однієї і тієї ж рідини слідують поруч або проникають один в інший. (Т. Карман).
Турбулентний рух рідини передбачає наявність неврегульованої течії, в якій різні величини зазнають хаотичних змін у часі і по просторових координатах і при цьому можуть бути виділені статистично точні їх осреднені значення. (І. Хінце)
Науковий термін турбулентність широко використовується в різних областях сучасної науки. Див. турбулентність(значення).
Турбулентним називається рух рідини (газу або плазми[ джерело? ]), що супроводжується утворенням вихорів.
Течія, що відбувається без утворення вихорів, називається ламінарною.
Критерієм турбулентності є досягнення числом Рейнольдса критичного значення:
де ρ — густина,
µ — коефіцієнт динамічної в'язкості,
v — характерна швидкість течії рідини (газу),
l — характерний розмір перешкод.
При малих значеннях числа Рейнольдса добуток характерної для течії швидкості плину на характерні розміри перешкод малий у порівнянні з в'язкістю. Тому завдяки в'язкості течія зберігає впорядковану структуру. При великих значеннях числа Рейнольдса рух рідини стає турбулентним.
Турбулентна течія має місце, коли число Re більше критичного значення. Для випадку течії води в круглій трубі Reкр = 2200. Це критичне значення числа Рейнольдса досить умовне і є результатом певного усереднення численних дослідів. У кожному конкретному випадку критичне значення числа Рейнольдса буде залежати від властивостей стінки труби та наявності початкових збурень у рідині на вході в трубу. Ламінарна течія спостерігається в дуже в'язких рідинах або за малої швидкості, а також при повільному обтіканні дуже в'язкою рідиною тіл малих розмірів. Зі збільшенням швидкості руху рідини (газу) ламінарна течія переходить у турбулентну.
Особливий характер руху частинок рідини в турбулентних течіях вимагає використання для статистичних підходів для визначення їх кількісних характеристик.
Турбулентність характеризується такими особливостями:
Через це енергетичний каскад турбулентного потоку може бути реалізований як суперпозиція спектру коливань швидкості потоку та вихорів середнього потоку. Вихори визначаються як когерентні закономірності швидкості потоку, завихреності і тиску. Турбулентні потоки можуть розглядатися як генеровані та ієрархічні вихори в широкому діапазоні масштабів довжини, а ієрархія може бути описана енергетичним спектром, який вимірює енергію в коливаннях швидкості потоку для кожної довжини (хвильове число). Масштаби в енергетичному каскаді, як правило, неконтрольовані і сильно несиметричні. Тим не менш, на основі цих масштабів довжини ці вихри можна розділити на три категорії.
інтегральний масштаб часу для лагранжевого потоку можна визначити як:
де u '- це коливання (пульсація) швидкості, a часове запізнення між вимірами.
Колмогорівський масштаб - найменші масштаби в спектрі, які утворюють в'язкий діапазон підшарів. У цьому діапазоні дисипація енергії мікротурбулентних потоків залежить від в'язкості середовища. Малі масштаби турбулентності мають високу частоту, що обумовлює локальну турбулентність, ізотропність та однорідність.
Тейлорівський масштаб - проміжні масштаби між найбільшими і найменшими масштабами, які відповідають інерційному підрівню. Масштаби (мікромасштаби) Тейлора не є дисипативною шкалою, у вихорах цього рівня енергія передається від найбільшого до найменшого вихора без розсіювання. Деякі автори не розглядають масштаби Тейлора як характеристичну шкалу довжини вихорів і вважають, що їх каскад енергії містить лише найбільші та найменші масштаби.
Більш докладна презентація турбулентності з акцентом на виклад чисел Рейнольдса, призначена для загального читання фізиків і прикладних математиків, викладена в статтях Бензі та Фріша and by Falkovich.
Крім того, є багато масштабів метеорологічних рухів; в цьому контексті турбулентність впливає на дрібні рухи.
Для теоретичного опису турбулентності застосовуються різні підходи.
Турбулентні потоки розраховують за деякими середніми за часом і просторово розрахунковими параметрам течії, які називають усередненими. Пульсаційною добавкою швидкості називають різницю між істинною швидкістю v' в точці vточ і усередненою швидкістю νсер.:
v' = vточ - νсер.
Пульсаційні добавки швидкості мають позитивні і негативні значення і є функціями часу і координат, причому ці функції є випадковими функціями. У ряді важливих практичних завдань з достатнім наближенням можна вважати, що вони підкоряються нормальному закону Гауса про розподіл ймовірності.
За апокрифічною історією, Вернера Гейзенберг запитали, про що він попросить Бога, якщо видасться така можливість. Його відповідь була наступною: «Коли я зустрінуся з Богом, збираюся поставити йому два запитання: щодо теорії відносності і турбулентності. Я дійсно вірю, що отримаю відповідь на перше.»