Ilustracja ruchów konwekcyjnych w przypadku prostej kuchenki
Rysunek przedstawia rozkład temperatury wywołany konwekcją (czerwień - wyższa temperatura, niebieski - niższa) uzyskany jako symulacja komputerowa. Gorące, lżejsze położone niżej warstwy tworzą pióropusze gorącej materii, podobnie chłodniejszy materiał z góry przenosi się w dół. W symulacji przyjęto parametry substancji takie jak konwekcji w płaszczu Ziemi.
Powstawanie komórek konwekcyjnych

Konwekcjaproces przekazywania ciepła związany z makroskopowym ruchem materii w gazie, cieczy lub plazmie, np. powietrzu, wodzie, plazmie gwiazdowej. Czasami przez konwekcję rozumie się również sam ruch materii związany z różnicami temperatur, który prowadzi do przenoszenia ciepła. Ruch ten precyzyjniej nazywa się prądem konwekcyjnym.

Konwekcja jako proces

Konwekcja jest jednym z kilku mechanizmów transportu energii cieplnej ( wymiany ciepła), np. przenoszenie za pomocą dyfuzji molekularnej, dyfuzji turbulencyjnej, adwekcja (przenoszenie, konwekcja) ciepła. Konwekcja jest wydajnym sposobem przekazywania ciepła, ale jednocześnie silnie zależnym od substancji i warunków w jakich zachodzi. Konwekcja w atmosferze i wodzie ma duże znaczenie w kształtowaniu klimatu i pogody na Ziemi.

Wyróżnia się:

  • Konwekcję swobodną – ruch płynu jest wywołany różnicami gęstości (ciśnienia), wywołanymi różnicą temperatur.
  • Konwekcję wymuszoną – występuje ruch płynu niewynikający z konwekcji, wywoływany przez czynniki zewnętrzne urządzenia wentylacyjne, wiatr itp.

W układach fizycznych często występuje konwekcja mieszana, będącą złożeniem obu typów konwekcji. Ilość przekazanego ciepła przez konwekcję zależy od szybkości ruchu płynu, dlatego w celu zwiększenia przekazywania ciepła w komputerach, chłodnicach samochodowych itp. stosuje się wentylatory zwiększające prędkość przepływu powietrza.

Prąd konwekcyjny

Każda konwekcja wynika z istnienia prądu konwekcyjnego. W konwekcji naturalnej prąd ten powodowany jest różnicą gęstości pomiędzy obszarami o różnej temperaturze w płynie. W stanie stacjonarnym prądy konwekcyjne tworzą zamknięte pętle - komórki konwekcyjne. Komórka konwekcyjna, w danych warunkach (różnicy temperatur, lepkości płynu) ma pewne minimalne rozmiary. Jeżeli objętość, w której znajduje się płyn, jest mniejsza od minimalnego rozmiaru komórki konwekcyjnej, wówczas prąd konwekcyjny nie powstaje i zjawisko konwekcji nie zachodzi. Efekt ten ma kluczowe znaczenie w konstruowaniu materiałów izolacyjnych, w których występują przestrzenie wypełnione powietrzem.

Przykłady ruchów konwekcyjnych:

  • gorące gazy unoszące się do góry nad płomieniem
  • śreżoga – rozedrgane powietrze tworzące wrażenie mgły w gorący i upalny dzień (np. nad rozgrzanym asfaltem)
  • delikatny ruch wody podczas podgrzewania (widoczny w naczyniu jako ruszająca się delikatna "mgiełka").

Prądy konwekcyjne w atmosferze są przyczyną powstawania niektórych rodzajów chmur (gł. chmur kłębiastych: cumulus i cumulonimbus).


W tym artykule użyto materiału z artykułu Wikipedii Konwekcja, który jest wydawany w ramach Creative Commons Attribution-Share-Alike License 3.0.