Arhimed Αρχιμήδης | |
---|---|
![]() Portret Arhimeda, Domenico Fetti, 1620 | |
Izvirno ime | Αρχιμήδης |
Rojstvo | 287 pr. n. št. ancient Syracuse [d] |
Smrt | cca. 212 pr. n. št. Sirakuze |
Druga imena | Arhimedes |
Področja | matematika fizika statika tehnika astronomija izumi |
Poznan po | Arhimedov aksiom Arhimedov dvojček Arhimedov krempelj Arhimedov palimpsest Arhimedov problem goveda Arhimedov vijak Arhimedov zakon Arhimedova spirala Arhimedova točka Arhimedovo število arhimedska krožnica arhimedska spirala približek za π |
Arhimed (tudi Arhimedes) [arhiméd/arhimédes] ( starogrško Αρχιμήδης : Arhimḗdēs, Arhimídis), starogrški matematik, fizik, mehanik, izumitelj, inženir in astronom, * 287 pr. n. št., Sirakuze, Sicilija, † 212 pr. n. št., Sirakuze.
Čeprav je o njegovem življenju znanih samo nekaj podrobnosti, velja za največjega matematika antike in enega od največjih vseh časov. Arhimed je s konceptom neskončno majhne količine in metodo izčrpavanja izpeljal in strogo dokazal vrsto geometrijskih izrekov, vključno s ploščino kroga, površino in prostornino krogle ter ploščino pod parabolo, s čimer je že nakazal sodobni infinitezimalni račun in matematično analizo.
Med druge matematične dosežke spadajo točen približek števila π, ki ga je določil z analizo Arhimedove spirale, in eksponentno izražanje zelo velikih števil. Bil je tudi eden prvih, ki je uporabil matematiko za razlago fizikalnih pojavov, postavil temelje hidrostatike in statike, vključno z razlago delovanja vzvoda. Izumil je tudi več naprav, med njimi vijačno črpalko, škripčevje in vojaške stroje za obrambo Sirakuz.
Umrl je med obleganjem Sirakuz. Ubil ga je rimski vojak, čeprav je imel ukaz, da se mu ne sme nič zgoditi. Rimski govornik Cicero piše, da so mu na njegovo zahtevo na grob postavili kroglo in valj, ki sta simbolizirala njegova matematična odkritja.
Za razliko od njegovih izumov so bili njegovi matematični spisi v antiki bolj malo znani. Prebirali in navajali so jih matematiki iz Aleksandrije, prvi obširen zbornik njegovih del pa je nastal šele okoli leta 530. V Konstantinoplu ga je objavil bizantinski matematik, astronom in arhitekt Izidor iz Mileta. Komentarje Arhimedovih del, primerne tudi za širše bralstvo, je prvi napisal in objavil Evtokij v 6. stoletju. Srednji vek je preživelo razmeroma malo kopij Arhimedovih spisov, ki so kasneje postali pomemben vir zamisli za renesančne učenjake. Leta 1906 so odkrili do tedaj neznan Arhimedov palimpsest, grški prepis Arhimedovih del iz 10. stoletja, ki je dal nove vpoglede v Arhimedove matematične metode.
Arhimed je bil rojen okoli leta 287 pr. n. št. v sicilskem pristaniškem mestu Sirakuze, ki je bilo tedaj samoupravna kolonija Magnae Graeciae ob obali južne Italije. Datum njegovega rojstva temelji na trditvi bizantinskega grškega zgodovinarja Ivana Ceca, da je živel 75 let. Arhimed v Psamitu (O številu peščenih zrn) omenja, da je bil njegov oče astronom Fidij, o katerem ni nič znanega. Plutarh v svojih Vzporednih življenjih piše, da je bil Arhimed v sorodu s kraljem Hieronom II. Sirakuškim. Arhimedov življenjepis, ki ga je napisal njegov prijatelj Herakleid, se je izgubil, zato so podrobnosti iz njegovega življenja nejasne. Nič ni znanega na primer o tem, ali je bil poročen in imel otroke. V mladosti je morda študiral v Aleksandriji, kjer sta tedaj študirala tudi Konon s Samosa in Eratosten iz Kirene. Arhimed omenja, da je bil Konon njegov prijatelj, Eratostenu pa je posvetil uvoda v svojih Metodah mehanskih izrekov in Problemu goveda.
Umrl je med drugo punsko vojno okoli leta 212 pr. n. št., ko je rimska vojska pod poveljstvom generala Marka Klavdija Marcela po dveh letih obleganja osvojila Sirakuze. Njegovo smrt ob zavzetju Sirakuz so opisali različno. Plutarh je o njej poročal takole:
Arhimedove zadnje besede naj bi bile »Ne dotikaj se mojih krogov!« (latinsko Noli turbare circulos meos!, grško μὴ μου τοὺς κύκλους τάραττε! [Mē mou tous kuklous taratte!]), se pravi matematičnega grafa, ki ga je ravno preučeval. Za to trditev ni nobenega trdnega dokaza, ker ni omenjena v nobenem Plutarhovem zapisu.
Plutarh ponuja tudi drug, manj znan opis njegove smrti. V njem pravi, da so ga ubili med poskusom predaje. V tej zgodbi je Arhimed nosil matematični instrument, vojak pa je mislil, da nosi dragocenost in ga je ubil. General Marcel naj bi bil zaradi njegove smrti ogorčen, saj ga je imel za uglednega učenjaka in je ukazal, da mu ne smejo storiti nič žalega.
V Nepozabnih dejanjih in izrekih Valerija Maksima iz 1. stoletja n. št. so Arhimedove zadnje besede malo drugačne:
Arhimedov grob sta na njegovo željo krasila krogla in valj, ki sta simbolizirala njegovo najslavnejše matematično odkritje. Dokazal je namreč, da sta prostornina in površina krogle enaka dvema tretjinama prostornine in površine enakostraničnega valja z višino, enako premeru krogle. Leta 75 pr. n. št., se pravi 137 let po Arhimedovi smrti, je njegov grob iskal Cicero, ki je služil na Siciliji kot kvestor. Zgodbo o Arhimedovem grobu so domačini poznali, nihče pa ni vedel, kje je. Grob je odkril pri Agrigentskih vratih v Sirakuzah. Bil je povsem zanemarjen in zaraščen, zato ga je očistil in nato prebral nekaj napisov na nagrobniku. Potem je sled ponovno izginila, dokler niso leta 1965 o najdbi njegovega groba na dvorišču Hotela Panorama v Sirakuzah poročali italijanski arheologi. Za to, da je grob res njegov, ni nobenega trdnega dokaza.
Najbolj znana zgodba o Arhimedu pripoveduje, kako je odkril metodo za določane prostornine teles nepravilnih oblik. Arhimedu so prinesli krono, ki naj bi bila izdelana iz čistega zlata, in ga vprašali, ali so goljufivi zlatarji k zlatu primešali tudi nekaj srebra. Arhimed krone ni smel poškodovati, zato jo je potopil v vodo in iz dviga nivoja vode izračunal njeno prostornino. Meritev je mogoča zaradi dejstva, da je voda pri teh pogojih praktično nestisljiva. Ugotovil je, da je gostota krone manjša od gostote čistega zlata in s tem dokazal, da je k zlatu primešanega nekaj cenejšega srebra. Po tem odkritju je menda gol tekal po sirakuških ulicah in vpil »Eureka!« (grško εὕρηκα [heúrēka]), se pravi »Odkril sem!«. Zgodba o zlati kroni v Arhimedovih znanih delih ni omenjena, v praksi pa pomeni, da je izračun mogoč zaradi možnosti zelo točnega tehtanja mase izpodrinjene tekočine.
Hidrostatični tlak in Arhimedovo načelo je opisal v razpravi O plavanju teles. Zakon pravi, da na plavajoče telo deluje sila vzgona F, ki je enaka teži izpodrinjene tekočine:
kjer je:
Sila vzgona deluje proti sili teže. Njeno prijemališče je težišče telesa. Arhimedova metoda se še danes uporablja za določanje gostote snovi in preučevanje plovnosti teles.
Velik del Arhimedovega inženirskega dela je nastal med izpolnjevanjem potreb domačih Sirakuz. Grški pisatelj Atenej piše, da je sirakuški kralj Hieron II. pri Arhimedu naročil načrte za veliko ladjo Sirakuzijo, ki bi bila uporabna za luksuzno potovanje in kot vojna ladja. Sirakuzija naj bi bila naj bi bila največja ladja, zgrajena v antiki. Po Atenejevem pisanju je lahko nosila 600 ljudi, imela okrasne vrtove, gimnazijo in tempelj, posvečen boginji Afroditi. Ker je ladja puščala in je vanjo vdiralo veliko vode, ja Arhimed domnevno razvil vijak, s katerim je izčrpaval kalužo. Arhimedov stroj je imel vijačnico, vgrajeno v notranjosti valja. Poganjal se je z rokami. Kasneje se je izkazalo, da je uporaben tudi za črpanje vode iz nižje ležečih namakalnih kanalov. Arhimedov vijak se še vedno uporablja za črpanje tekočin iz suhih zrnatih trdnih snovi, na primer premoga in žita. Arhimedov vijak, ki ga je v rimskih časih opisal Mark Vitruvij, bi lahko bil izboljšana različica vijačne črpalke, ki so jo uporabljali za namakanje Babilonskih visečih vrtov.
Prvi parnik s pogonom na Arhimedov vijak, zgrajen leta 1838, so njegovemu izumitelju v čast imenovali SS Archimedes.
Arhimedov krempelj je bil eden od strojev, ki jih je med 2. punsko vojno skonstruiral Arhimed za obrambo Sirakuz pred vojsko Rimske republike pod poveljstvom generala Marka Klavdija Marcela. Videz in delovanje stroja sta še vedno predmet razprav. Antični viri trdijo, da je stal na morskem obzidju za obrambo pred napadom z morja. Skopi opisi pravijo, da je bil nekakšen žerjav oziroma ogromno dvigalo, s katerega je visela kljuka. To se je lahko zagozdilo za sovražno ladjo, jo z dvigalom dvignilo in tako potopilo.
V zadnjem času so večkrat poskusili rekonstruirati in preskusiti Arhimedovo orožje. Leta 2005 je ekipa, ki jo je zbral Discovery Channel, v televizijski oddaji Super orožja antičnega sveta zgradila svojo inačico orožja in dokazala, da deluje.
Arhimed je kot orožje morda uporabil tudi več zrcal, ki so kot celota delovala kot parabolično zrcalo in bi lahko vžgala rimske oblegovalne ladje. V 2. stoletju n. št. je grški retorik Lucijan zapisal, da je Arhimed med obleganjem Sirakuz uničili sovražne ladje z ognjem. Nekaj stoletij kasneje je grški arhitekt in matematik Antemij kot Arhimedovo orožje omenil konkavne leče.
Tudi to domnevno orožje je že od renesanse predmet razprav. Descartes ga je zavrnil kot nemogoče, medtem ko so sodobni raziskovalci poskušali poustvariti njegov učinek samo s sredstvi, ki jih je imel na razpolago Arhimed. Mednje so spadali polirani bronasti ali bakreni ščiti, ki bi delovali kot sistem paraboličnih zrcal in usmerili svetlobo na sovražno ladjo. Enako načelo uporabljajo sodobne sončne peči.
Preskus Arhimedovega toplotnega žarka je leta 1973 opravil grški znanstvenik Ioannis Sakkas v vojaški pomorski bazi Skaramagas pri Atenah. 70 pobakrenih zrcal velikosti 1,5 × 1,0 m je usmeril na maketo rimske bojne ladje iz vezanega lesa, oddaljene približno 50 m. Ko so bila zrcala točno usmerjena, se je ladja po nekaj sekundah vžgala. K temu je verjetno veliko pripomogel premaz iz bitumna, s katerim so premazovali ladje tudi v klasičnem obdobju.
Oktobra 2005 je preskus izvedla skupina študentov s Tehnološkega inštituta Massachusettsa. Uporabila je 127 kvadratnih zrcal s stranico 30 cm, usmerjenih na maketo lesene ladje, oddaljeno 30 m. Maketa se je vžgala samo ob povsem jasnem vremenu in ko je bila pri miru najmanj deset minut. Zaključek preskusa je bil, da so pri teh pogoji zrcala uporabno orožje. Ekipa z istega inštituta je preskus ponovila v San Franciscu za televizijsko oddajo MythBusters. Za tarčo je izbrala leseno ribiško barko. Med preskusom je les pooglenel in se samo rahlo vnel, ker je za njegov vžig potrebna temperatura približno 300 °C.
Ekipa MythBusters je preskus uvrstila med nepotrjene oziroma spodletele, ker so za njegov uspeh potrebne idealne vremenske razmere in dovolj velik čas. Poudarili so, da se Sirakuze odpirajo proti vzhodu, zato bi bila obramba uspešna samo dopoldne, ko je učinek sončne svetlobe ob taki legi največji, in da so imeli branilci za uničevanje ladij na majhne razdalje na razpolago mnogo bolj enostavna in dostopna orožja, na primer goreče puščice in katapulte.
Ekipa MythBusters je preskuse ponovila decembra 2010 in jih ponovno uvrstila v kategorijo nepotrjeno, ker temperatura jader na ladji nikoli ni dosegla temperature 210 °C, potrebne za njihov vžig. Eden od zaključkov je bil, da bi zrcala bolj motila oziroma slepila ladijsko posadko kot resno ogrozila njihovo ladjo.
Arhimed ni izumil vzvoda, ampak je v delu Ravnotežje geometrijskih likov pojasnil načelo njegovega delovanja in s tem postavil temelje sodobne statike. Vzvod je tog, v neki točki podprt drog. Dela vzvoda levo in desno od podpore sta ročici ali kraka. Vzvod je v ravnotežju kadar sta produkta bremen in ročic enaka:
kjer sta:
To pomeni, da je za dvig bremena na kratki ročici na daljši ročici potrebna manjša sila.
Po Paposu Aleksandrijskem je Arhimed po svojem odkritju izjavil: »Dajte mi mesto, kamor ga bom lahko oprl, pa bom premaknil Zemljo« (grško δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω). Svojo trditev je na kraljev poziv menda dokazal tako, da je ladjo, polno Sirakužanov, s sistemom vzvodov in škripcev dvignil iz morja in jo odložil na obalo. Kralj je potem izjavil, da je treba Arhimedu odslej verjeti brez ugovora.
Načelo so pred njim opisali Aristotelovi učenci peripatetiki, njegovo odkritje pa se včasih pripisuje Arhitu.
Plutarh piše, da je Arhimed zasnoval škripčevje, ki je delovalo po načelu vzvoda in je mornarjem omogočalo dvigovanje sicer pretežkih bremen. Zaslužen je tudi za izboljšanje moči in točnosti katapulta in izum odometra. Odometer je opisan kot voziček z zobniškim mehanizmom, ki je po vsaki prepotovani milji v posodo spustil kroglico.
Cicero na kratko omenja Arhimeda v svojem delu De re publica, izmišljenem pogovoru, ki naj bi potekal leta 129 pred n. št. General Mark Klavdij Marcel je po zavzetju Sirakuz okoli leta 212 pred n. št. dejal, da bo v Rim odnesel dva Arhimedova mehanizma, ki sta kazala gibanje Sonca, Lune in petih planetov in sta bila uporabna v astronomiji. Cicero omenja tudi, da sta podoben mehanizem zasnovala Tales iz Mileta in Evdoks. Marcel naj bi enega od mehanizmov obdržal zase kot vojni plen, drugega pa poklonil templju Vrlin v Rimu. Napravi sta bila nekakšna planetarija ali modela planetnega sistema.
Papos trdi, da je Arhimed opisal konstrukcijo mehanizma v rokopisu O izdelavi nebesnega svoda, ki se je izgubil. Sodobne raziskave na tem področju so se osredotočile na podoben mehanizem z Antikitere, izdelan okoli leta 100 pred n. št. Za izdelavo mehanizma je bilo potrebno prefinjeno poznavanje diferencialnih reduktorjev, za katerega se je dolgo časa domnevalo, da presega domet antične tehnologije. Odkritje mehanizma z Antikitere leta 1902 je dokazalo, da so tovrstne naprave poznali že stari Grki.
Arhimed se ni ukvarjal samo z izumljanjem mehanskih naprav, temveč tudi s fiziko, astronomijo in zlasti z matematiko. Obvladoval je infinitezimale, števila z zelo majhnimi absolutnimi vrednostmi, vendar večja od 0, in jih uporabljal na način, podoben sedanjemu integriranju.
Skušal je načrtati pravilni sedemkotnik.
V Merjenju kroga je izračunal tudi vrednost kvadratnega korena števila 3:
ali približno:
Ahimedova spodnja in zgornja meja sta točni na 223409 (4 desetiška mesta) in 1608400 (6 desetiških mest). Pri tem ni navedel točnega postopka, verjetno pa je uporabil iteracijo, neko vrsto intepolacijske metode ali kombinacijo več metod. Dejanska vrednost je približno 1,7320508. Na ta način je sicer najboljša spodnja meja enaka:
ni pa jasno zakaj je Arhimed ni navedel. Mogoče je potreboval boljšo zgornjo mejo in je računal naprej, spodnje meje pa ni navajal. Čeprav svojih metod ni pojasnil, se lahko približka dobita na enak način kot rešitev Pellove enačbe za n = 3:
Zdi se, da Arhimed ni bil posebno ponosen na svoje mehanske izume. Zanje je mislil, da ne predstavljajo pravega filozofskega dela, zato je objavljal samo svoje matematične razprave. Pisal je v dorski grščini, narečju antičnih Sirakuz. Njegovi spisi se niso tako dobro ohranili kot Evklidovi, zato je sedem njegovih razprav znanih samo iz omemb drugih avtorjev. Papos Aleksandrijski omenja razpravo O izdelavi krogle in druga dela s področja mnogokotnikov, medtem ko Teon Aleksandrijski citira odlomek o lomu svetlobe iz izgubljene razprave Catoptrica. Arhimed je svoja odkritja objavljal v korespondenci z aleksandrijskimi matematiki. Njegova dela je prvi zbral bizantinski grški arhitekt Izidor iz Mileta okoli leta 530. Komentarje njegovih del je v 6. stoletju napisal Evtokij iz Aškalona, s čimer je njihovo poznavanje razširil na večji krog ljudi. Tabit ibn Kora (836–901) je Arhimedova dela prevedel v arabščino, Gerard iz Cremone (okoli 1114–1187) pa v latinščino. Med renesanso je Johann Herwagen leta 1544 v Baslu objavil Editio Princeps (Prva izdaja) Arhimedovih del v grškem in latinskem jeziku. Okoli leta 1586 je Galileo Galilei iznašel hidrostatsko tehtnico za tehtanje kovin v zraku in vodi, za katero je domnevno dobil navdih v Arhimedovih delih.
Med izgubljena Arhimedova dela spadajo razprave o tehtnicah, težišču, lomu svetlobe, izdelavi krogel in dolžini leta.
Knjiga lem (latinsko Liber Assumptorum) je razprava s petnajstimi izreki o značilnostih kroga. Najstarejša znana kopija je napisana v arabščini. Bagdadski učenjak Tabit ibn Kora, ki je živel v 9. stoletju, jo pripisuje Arhimedu, čeprav je njeno avtorstvo vprašljivo.
Arhimedu se pripisuje tudi Heronova formula za izračun ploščine trikotnika iz dolžine njegovih stranic. Prva zanesljiva omemba formule je omemba Herona Aleksandrijskega v 1. stoletju n. št.