वित्त में, पूँजीगत परिसम्पत्ति कीमत निर्धारण मॉडल (capital asset pricing model सी॰ए॰पी॰एम॰) का उपयोग किसी पूँजीगत परिसम्पत्ति के लिए सैद्धांतिक रूप से उपयुक्त वांछित प्रतिलाभ दर ज्ञात करने के लिए किया जाता है, जब इस परिसम्पत्ति को एक पहले से ही सुविशाखीकृत संविभाग (अच्छी तरह से डाईवर्सिफाईड पोर्टफोलियो) में जोड़ा जाना हो, तथा जबकि उस परिसम्पत्ति का अशाखनीय जोखिम (non-diversifiable risk) ज्ञात हो। इस मॉडल में परिसंपत्ति के अशाखनीय जोखिम ( व्यवस्थात्मक जोखिम या बाज़ार जोखिम) जिसे वित्त क्षेत्र में प्रायः 'बीटा' (β) के द्वारा प्रदर्शित किया जाता है, को गणना में लिया जाता है तथा बाजार के प्रत्याशित प्रतिलाभ व सैद्धांतिक जोखिम-मुक्त परिसंपत्ति के प्रत्याशित प्रतिलाभ को भी। सी॰ए॰पी॰एम॰ का सुझाव है कि किसी निवेशक की शेयर पूँजी की लागत का निर्धारण 'बीटा' (β) से होता है। ” इस मॉडल का विस्तृत रूप द्वि-बीटा मॉडल है, जो कि उर्ध्वगामी बीटा को अधिगामी बीटा से भिन्न करता है।
सी॰ए॰पी॰एम॰ की अवधारणा, हैरी मार्कोविट्ज़ द्वारा विशाखीकरण/विविधीकरण तथा आधुनिक संविभाग थियोरी पर पहले किए गए कार्य का विस्तार करते हुए, जैक ट्रेयनॉर (1961, 1962), विलियम शार्पे (1964), जॉन लिन्टनर (1965a,b) and जान मोसिन (1966) द्वारा स्वतंत्र रूप से प्रस्तुत की गई। 1990 में शार्पे, मार्कोविट्ज़ व मर्टन मिलर को संयुक्त रूप से वित्तीय अर्थशास्त्र में योगदान के लिए नोबेल पुरस्कार से सम्मानित किया गया। फिशर ब्लैक (1972) ने सी॰ए॰पी॰एम॰ का एक और संस्करण, ब्लैक सी॰ए॰पी॰एम॰ या शून्य-बीटा सी॰ए॰पी॰एम॰, विकसित किया जिसमें जोखिम-मुक्त परिसंपत्ति की मान्यता को खारिज किया गया था। empirical testing में यह संस्करण अधिक दृढ़ था तथा सी॰ए॰पी॰एम॰ की वैश्विक स्वीकृति में इसका प्रभावी योगदान रहा।
मूल्य निर्धारण व पोर्टफोलियो चयन के कई आधुनिक तरीकों (जैसे अंतरपणन कीमत सिद्धांत व मर्टन पोर्टफोलियो समस्या, क्रमशः) के आगमन तथा अंतरपणन आनुभविक खामियों, के बावजूद अपनी साधारणता व विभिन्न प्रकार परिस्थितियों में उपयोगिता के कारण सी॰ए॰पी॰एम॰ अभी भी अधिक प्रचलित है।
![]() |
सी॰ए॰पी॰एम॰ किसी अकेली परिसंपत्ति अथवा परिसंपत्तियों के समूह (पोर्टफोलियो) की कीमत निर्धारण करने के लिए एक मॉडल है। अकेली प्रतिभूति के लिए, हम प्रतिभूति बाजार रेखा (security market line, SML) तथा प्रत्याशित प्रतिलाभ व सिस्टेमैटिक जोखिम के साथ उसके संबंध (बीटा) का प्रयोग यह जानने के लिए करते हैं कि बाजार के द्वारा किसी एक प्रतिभूति की कीमत उसकी जोखिमश्रेणी की तुलना में कितनी निर्धारित होगी। प्रतिभूति बाजार रेखा से किसी एक संपत्ति की पूरे बाजार की तुलना में प्रतिफल-जोखिम अनुपात की गणना भी की जा सकती है। अतः जैसे जैसे किसी संपत्ति का प्रत्याशित प्रतिलाभ उसके बीटा कोफिशेन्ट द्वारा घटता चला जाएगा, इस अकेली संपत्ति का प्रतिफल-जोखिम अनुपात, संपूर्ण बाजार के प्रतिफल-जोखिम अनुपात के बराबर होता चला जाएगा। इस प्रकार:
बाजार का प्रतिफल-जोखिम अनुपात ही प्रभावी तौर पर बाजार जोखिम अधिमूल्य/प्रीमियम है और उपरोक्त समीकरण को पुनः नियोजन करने पर तथा E(Ri) का मान निकालने पर, हमें पूँजीगत परिसम्पत्ति कीमत निर्धारण मॉडल (सी॰ए॰पी॰एम॰) प्राप्त हो जाता है।
जहाँ:
यदि इसी को जोखिम प्रीमियम के दृष्टिकोण से पुनर्लेखित किया जाए, तो हम पाते हैं कि:
अर्थात् किसी परिसंपत्ति का "अपना जोखिम प्रीमियम"- "बाजार जोखिम प्रीमियम" व "बीटा" (β) का गुणनफल है।
नोट 1: बाजार के प्रत्याशित प्रतिफल का अनुमान प्रायः किसी बाजार-पोर्टफोलियो (जैसे कि कोई शेयर सूचकाँक) के एतिहासिक प्रतिफलों के मान का ज्योमैट्रिक औसत निकालकर लगाया जाता है।
नोट 2: जोखिम की गणना हेतु प्रयुक्त 'जोखिम मुक्त प्रतिफल दर' प्रायः एतिहसिक दरों का arithmetic औसत होता है ना कि वर्तमान दर।
For the full derivation see Modern portfolio theory.
सी॰ए॰पी॰एम॰ को आमाप अधिवेतन और विशिष्ट जोखिम शामिल करने के लिए संशोधित किया जा सकता है। यह उन निवेशकों के लिए महत्वपूर्ण है जिनके पास एक उन्नत-विशाखित पोर्टफोलियो नहीं है। समीकरण पारम्परिक सी॰ए॰पी॰एम॰ समीकरण के समान ही है “जिसमें बाजार जोखिम अधिवेतन को बीटा उत्पा और बाजार जोखिम अधिवेतन के गुणा से प्रतिस्थापित कर दिया गया है:”
"जहाँ:
प्रतिभूति बाज़ार रेखा (Security market line,SML) सी॰ए॰पी॰एम॰ के फार्मूला का ग्राफ के रूप में चित्रण करती है। x अक्ष पर जोखिम (बीटा) को दिखाते हैं और y अक्ष पर प्रत्याशित प्रतिलाभ। बाजार जोखिम का अनुमान प्रतिभूति बाज़ार रेखा की ढलान (स्लोप) से लगाया जाता है।
β तथा प्रत्याशित प्रतिलाभ के मध्य संबंध का चित्रण प्रतिभूति बाज़ार रेखा (SML) पर किया जाता है, जो कि प्रत्याशित प्रतिलाभ को β के फलन के रूप में प्रदर्शित करता है। The intercept is the बाजार में उपलब्ध nominal जोखिम मुक्त दर है, जबकि ढलान market premium है, E(Rm)− Rf। एसा कहा जा सकता है कि प्रतिभूति बाज़ार रेखा as representing a single-factor model of the asset price को दिखाती है, जबकि β से पता चलता है कि उसकी बाजार में परिवर्तनों से प्रभावित होने की संभावना कितनी है (where Beta is exposure to changes in value of the Market.) इस प्रकार SML का समीकरण इस प्रकार है:
ऐसी परिस्थितियों के लिए यह एक अति महत्वपूर्ण टूल है जब पता करना हो कि क्या (पोर्टफोलियों में सम्मिलित करने हेतु विचाराधीन) कोई परिसमपत्ति/प्रतिभूति जोखिम की तुलना में एक स्वीकार्य प्रतिफल देगी कि नहीं। अकेली परिसंपत्तियों का चित्रण प्रतिभूति बाज़ार रेखा ग्राफ पर किया जाता है। यदि जोखिम व प्रतिफल का परस्पर चित्रण रेखा से ऊपर होता है तो इसका अर्थ है कि यह प्रतिभूति सस्ती मिल रही है और इस पर अधिक लाभ की उम्मीद की जा सकती है। यदि चित्रण रेखा से नीचे आ पड़े तो मूल्य को मंहगा समझा जाना चाहिए तथा इसमें उतना लाभ नहीं मिलेगा जितना कि जोखिम उठाया जा रहा है।
सीएपीम का उपयोग करते हुए प्रत्याशित/वाँछित लाभदर ज्ञात होने के पश्चात् इसकी तुलना संपत्ति के अनुमानित प्रतिलाभ दर (किसी निश्चित अंतराल में) से करके यह पता लगा सकते हैं कि यह निवेश अच्छा रहेगा कि नहीं। इसके लिए हमें संपत्ति के प्रतिलाभ के स्वतंत्र अनुमान की गणना की आवश्यकता होगी जो कि प्रायः फंडामेंटल अथवा टेक्निकल विश्लेषण, आनुपातिक विश्लेषण (मूल्य/आय- Price/Earning, बाजार मूल्य/आंतरिक मूल्य - Market Price/Book Value ) आदि के द्वारा की जाती है।
सी॰ए॰पी॰एम॰ के अनुसार, यदि अनुमानित मूल्य, संपत्ति के सी॰ए॰पी॰एम॰ द्वारा सुझाई दर के साथ समायोजित किए गए भविष्य नकदप्रवाह के बराबर है - तो संपत्ति सही मूल्य पर मिल रही है। यदि अनुमानित मूल्य सी॰ए॰पी॰एम॰ मूल्यांकन से अधिक है तो संपत्ति सस्ती है (यदि अनुमानित मूल्य सी॰ए॰पी॰एम॰ मूल्यांकन से कम है तो संपत्ति मंहगी है)।
किसी परिसंपत्ति का प्रतिभूति बाजार रेखा पर स्थित नहीं होना उसके मूल्य में विसंगति को दर्शाता है। चूँकि समयबिंदु पर संपत्ति का प्रत्याशित प्रतिफल जो कि सीएपीम द्वारा सुझाए प्रतिफल से अधिक है, तो इसका अर्थ है कि बहुत कम है(the asset is currently undervalued), assuming that at time the asset returns to the CAPM suggested price.
सी॰ए॰पी॰एम॰ (जिसे कभी कभी certainty equivalent pricing formula भी कहा जाता है) का प्रयोग करने पर परिसंपत्ति का मूल्य , निम्न लीनियर संबंध से प्रदर्शित किया जा सकता है:
जहाँ संपत्ति या पोर्टफोलियो का payoff है।
सी॰ए॰पी॰एम॰ द्वारा पता लगाया जा सकता है कि किसी विशिष्ट संपत्ति के तुलनात्मक जोखिम को ध्यान में रखते हुए उसकी अपेक्षित वापसी अर्थात् समायोजन दर (अर्थात् वह दर जिस पर कि उस संपत्ति के द्वारा भविष्य में पैदा होने वाली नकदी को समायोजित किया जाए), कितनी होनी चाहिए। यदि बीटा का मान एक से अधिक हो तो इसका अर्थ है - औसत से अधिक जोखिम; एक से कम का अर्थ है - औसत से कम जोखिम। इस प्रकार, किसी ज्यादा जोखिम वाले स्टॉक का बीटा अधिक होगा और उन्हें अधिक दर पर समायोजित किया जाएगा। जबकि कम संवेदनशील स्टॉक्स का बीटा कम होगा और उन्हें कम दर पर समायोजित किया जाएगा। यह प्रचलित अनौपचारिक धारणा, कि अधिक जोखिम लेने वाले निवेशक अधिक प्रतिफल की इच्छा रखते हैं, के अनुरूप ही है।
क्योंकि बीटा किसी एक परिसंपत्ति के जोखिम की पूरे बाजार जोखिम (अशाखनीय) के प्रति संवेदनशीलता का पैमाना (अनुपात) है, तो परिभाषा से स्पष्ट है कि बाजार जोखिम का बीटा का माप होगा : 1। बाजार जोखिम मापने के लिए एक पूरक पैमाने के रूप में स्टॉक मार्केट इंडेक्स का प्रयोग बहुतायत में किया जाता है, अतः इनका बीटा माप 1 होता है। इस प्रकार, एक बड़े और सुविशाखित पोर्टफोलियो (जैसे कि म्यूचुअल फंड) के निवेशक अपने निवेश से बाजार की चाल के अनुसार ही परिणामों की अपेक्षा कर सकते हैं।
किसी भी पोर्टफोलियो में मौजूद जोखिम प्रमुखतः दो प्रकार के जोखिमों का योग होता है - व्यवस्थात्मक जोखिम, जिसे बाजार जोखिम या अशाखनीय जोखिम (undiversifiable risk) भी कहा जाता है, तथा अव्यवस्थात्मक जोखिम जिसे शाखनीय जोखिम कहा जाता है। व्यवस्थात्मक या बाजार जोखिम उन कारणों की वजह से होता है जो समस्त निवेश विकल्पों अर्थात पूरे बाजार को प्रभावित करते है। इस प्रकार के जोखिम पर नियंत्रण करना कठिन है। अव्यवस्थात्मक जोखिम वह जोखिम है जो किसी विशेष प्रतिभूति अथवा निवेश विकल्प को प्रभावित करता है। निवेश का विशाखन (डाइवर्सिफिकेशन- एक ही विकल्प में सारा निवेश न कर के भिन्न भिन्न विकल्पों में निवेश करना) करके ऐसे जोखिम को नियंत्रित किया जा सकता है।
A rational investor should not take on any diversifiable risk, as only non-diversifiable risks are rewarded within the scope of this model. Therefore, the required return on an asset, that is, the return that compensates for risk taken, must be linked to its riskiness in a portfolio context—i.e. its contribution to overall portfolio riskiness—as opposed to its "stand alone risk." In the CAPM context, portfolio risk is represented by higher variance i.e. less predictability. In other words the beta of the portfolio is the defining factor in rewarding the systematic exposure taken by an investor.
सी॰ए॰पी॰एम॰ मानता है कि किसी निवेश के जोखिम-प्रतिफल अनुपात को दुरुस्त किया जा सकता है, एक आदर्श (ऑप्टिमम) पोर्टफोलियो वह होगा जो कि एक निर्धारित प्रतिफल दर के लिए न्यूनतम जोखिम के साथ हो। इसके अतिरिक्त, क्योंकि पोर्टफोलियो में जुड़ने वाली हर नई संपत्ति पोर्टफोलियो का और विशाखन करती है, since each additional asset introduced into a portfolio further diversifies the portfolio, the optimal portfolio must comprise every asset, (assuming no trading costs) with each asset value-weighted to achieve the above (assuming that any asset is infinitely divisible). All such optimal portfolios, i.e., one for each level of return, comprise the efficient frontier.
Because the unsystematic risk is diversifiable, the total risk of a portfolio can be viewed as beta.
कोई निवेशक एसा भी कर सकता है कि वह अपनी निधि का कुछ हिस्सा तो जोखिमयुक्त संपत्तियों में निवेश करे तथा कुछ हिस्सा नकद बचाकर रखे, जिसे जोखिम रहित दर पर कमाई होती रहे। (या फिर उधार लेकर जोखिमयु्क्त संपत्तियों में निवेश करे, जिस स्थिति में there is a negative cash weighting)। यहाँ पर जोखिमयुक्त व जोखिममुक्त का अनुपात overall return को निर्धारित नहीं करता - यह संबंध निश्चित ही linear है। इस प्रकार से यह संभव है कि निम्न दों में से किसी एक प्रकार एक निश्चित return प्राप्त किया जा सकता है :
हालाँकि एक निश्चित प्रतिलाभ के लिए, उपरोक्त में से कोई एक विकल्प ही कुशल (optimal) सिद्ध होगा (न्यूनतम जोखिम को ध्यान में रखते हुए)। चूँकि जोखिममुक्त संपत्ति परिभाषतः किसी भी अन्य संपत्ति से correlated नहीं है, द्वितीय विकल्प में सामान्यतः कम विचलन (variance) होगा जिसके कारण यह दोनों में से अधिक कुशल होगा।
यह संबंध प्रभावी सीमा (the efficient frontier) पर स्थित अन्य पोर्टफोलिओज़ के लिए भी सही होगा : उच्च प्रतिलाभ के साथ कुछ नकद- अधिक कुशल है बजाय - उसी प्रतिलाभ दर पर मात्र निम्न प्रतिलाभ वाले पोर्टफोलियो के। एक निश्चित जोखिममुक्त दर के लिए, एक ही कुशल पोर्टफोलियो होगा जिसे कि नकदी के साथ मिलाकर किसी भी प्रतिलाभ के लिए न्यूनतम जोखिम की स्थिति प्राप्त की जा सकती है। यही मार्केट पोर्टफोलियो है।
सभी निवेशकों:
द्वि-बीटा मॉडल उर्ध्वगामी बीटा को अधिगामी बीटा से भिन्न करता है। सी॰ए॰पी॰एम॰ तथा द्वि-बीटा मॉडल में अंतर यह है कि सी॰ए॰पी॰एम॰ मॉडल की मान्यता है कि उर्ध्वगामी औेर अधिगामी बीटा एक ही हैं जबकि द्वि-बीटा मॉडल एसा नहीं मानता। एसी मान्यता कभी विरले ही ठीक होती है, अतः द्वि-बीटा मॉडल को ही अधिक उपयुक्त माना जाता है।सन्दर्भ त्रुटि: अमान्य टैग;
(संभवतः कई) अमान्य नाम